'2020/04/16'에 해당되는 글 1건

  1. 2020.04.16 Hardware | ESP32 Cryptographic HW 가속 확인해 보기 2

Hardware | ESP32 Cryptographic HW 가속 확인해 보기

|

ESP32 에 관한 글들은 아래 링크들을 참고해 주세요.


* Hardware | EPS32 PWM 기능 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-EPS32-PWM

* Hardware | ESP32 의 internal sensor 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-ESP32-internal-sensors

* Hardware | ESP32 의 Dual core 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-ESP32-Dual-core

* Hardware | ESP32 스펙 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-ESP32-spec-check

* Hardware | ESP32 간단 사용기
    - https://chocoball.tistory.com/entry/Hardware-simple-review-ESP32



1. Cryptographic Hardware Acceleration


한 13여년 전에 웹 서비스 구축 시, HTTPS (SSL) 처리에 CPU 연산을 너무 많이 사용해서 골치가 아팠던 경험이 있습니다.

당시에는 NIC 에 붙어있는 Intel 칩에서 SSL 가속 처리를 못해줘, OS 에서 처리하다 보니 CPU 들이 죽어 나갔죠.


막 HW 가속기 (PCI daughter card 형식) 들이 등장하기도 했습니다만, 어디까지나 실험적인 제품들이었고, OS 와 HW 특성을 많이 타다 보니 PoC 단계에서도 그닥 실효를 거두지 못했었습니다.


암호 연산에 대해서는 요즘 NIC 나 CPU 자체적으로 전용 명령어 set을 가지고 지원하는 시대이다 보니, 예전같은 걱정은 말끔히 사라졌네요.


근래에 출시된 ESP32 에도, 이 암호 연산용 HW 가속 기능이 내장되어 있습니다!

다이어그램 상, SHA / RSA / AES / RNG 등이 있네요.



사양서에도 이 HW Accelerator 에 대한 안내가 되어 있습니다.



Cryptographic hardware acceleration

- AES, SHA-2, RSA, elliptic curve cryptography (ECC), random number generator (RNG)


이번 글은 위의 HW Accelerator 의 몇 가지 기능 중, ESP32 의 hardware AES 에 대해 알아보고자 합니다.




2. AES


미국 정부가 1990년 후반까지 사용하고 있던 DES 암호화 기법이, 약 30대 정도의 PC 를 가지고 뚫리면서, 새로운 암호화 기법을 찾게 됩니다. 공모 결과 AES 가 채택되면서 유명해진 암호화 기법이에요.


AES 는 "Advanced Encryption Standard" 의 약자로 cryptographic symmetric cipher algorithm 을 기반으로 encryption 과 decryption 양쪽에 사용될 수 있는 장점을 가지고 있습니다.

참고로 아래 두 가지의 parameter 를 필요로 합니다.


IV (Initial Vector)

맨 처음 block 을 XOR 처리를 할 때, 덮어 씌우는 data block 이 존재하지 않습니다. 이를 보충해 주기 위한 인위적인 블럭이 IV 입니다.


Encryption Key

암호화 / 복호화에 사용되는 고유의 키 입니다.



너무 자세한 설명에 들어가면, 저의 지식이 바닦 치는 것이 보이기에 여기서 그만 합니다.

인터넷에 관련된 문서 및 동영상들이 어마어마 하니, 자세히 공부해 보고 싶으신 분을 넓은 인터넷의 세계로...




3. Software AES - ESP32


HW 가속을 시험해 보기에 앞서, AES 를 소프트웨어적으루 구현해본 분이 계셔서 따라 해봤습니다.


* AES Encryption/Decryption using Arduino Uno
    - https://www.arduinolab.net/aes-encryptiondecryption-using-arduino-uno/


우선 필요한 것은, Spaniakos 라는 분이 만드신 AES 라이브러리를 설치해 줍니다. 아래 Github 에서 라이브러리를 다운 받습니다.


* AES for microcontrollers (Arduino & Raspberry pi)
    - https://github.com/spaniakos/AES



그리고, Arduino libraries 폴더에 심어 놓으면 됩니다.



기본 준비가 되었으니, ESP32 에서 AES-CBC 방식의 암호화/복호화를 실행 해봅니다.


/*------------------------------------------------------------------------------ 
Program:      aesEncDec 
 
Description:  Basic setup to test AES CBC encryption/decryption using different 
              key lengths.
 
Hardware:     Arduino Uno R3 
 
Software:     Developed using Arduino 1.8.2 IDE
 
Libraries:    
              - AES Encryption Library for Arduino and Raspberry Pi: 
                https://spaniakos.github.io/AES/index.html
 
References: 
              - Advanced Encryption Standard by Example: 
              http://www.adamberent.com/wp-content/uploads/2019/02/AESbyExample.pdf
              - AES Class Reference: https://spaniakos.github.io/AES/classAES.html
 
Date:         July 9, 2017
 
Author:       G. Gainaru, https://www.arduinolab.net
              (based on AES library documentation and examples)
------------------------------------------------------------------------------*/
#include "AES.h"

AES aes ;

unsigned int keyLength [3] = {128, 192, 256}; // key length: 128b, 192b or 256b

byte *key = (unsigned char*)"01234567890123456789012345678901"; // encryption key
byte plain[] = "https://chocoball.tistory.com/entry/Hardware-ESP32-Cryptographic-hardware-acceleration"; // plaintext to encrypt

unsigned long long int myIv = 36753562; // CBC initialization vector; real iv = iv x2 ex: 01234567 = 0123456701234567

void setup () {
	Serial.begin(115200);
}

void loop () {
	for (int i=0; i < 3; i++) {
		Serial.print("- key length [b]: ");
		Serial.println(keyLength [i]);
		aesTest (keyLength[i]);
		delay(2000);
	}
}

void aesTest (int bits) {
	aes.iv_inc();
	
	byte iv [N_BLOCK];
	int plainPaddedLength = sizeof(plain) + (N_BLOCK - ((sizeof(plain)-1) % 16)); // length of padded plaintext [B]
	byte cipher [plainPaddedLength]; // ciphertext (encrypted plaintext)
	byte check [plainPaddedLength]; // decrypted plaintext
	
	aes.set_IV(myIv);
	aes.get_IV(iv);
	
	Serial.print("- encryption time [us]: ");
	unsigned long ms = micros ();
	aes.do_aes_encrypt(plain, sizeof(plain), cipher, key, bits, iv);
	Serial.println(micros() - ms);
	
	aes.set_IV(myIv);
	aes.get_IV(iv);
	
	Serial.print("- decryption time [us]: ");
	ms = micros ();
	aes.do_aes_decrypt(cipher,aes.get_size(),check,key,bits,iv); 
	Serial.println(micros() - ms);
	
	Serial.print("- plain:   ");
	aes.printArray(plain,(bool)true); //print plain with no padding
	
	Serial.print("- cipher:  ");
	aes.printArray(cipher,(bool)false); //print cipher with padding
	
	Serial.print("- check:   ");
	aes.printArray(check,(bool)true); //print decrypted plain with no padding
	
	Serial.print("- iv:      ");
	aes.printArray(iv,16); //print iv
	printf("\n-----------------------------------------------------------------------------------\n");
}


암호화를 걸 평문은, 이 포스트의 URL 을 사용했습니다. :-)



암호화/복호화 잘 됩니다. 속도도 좋네요.




4. Software AES - ATmega328


비교 대상으로 궁금하여, ATmega328 을 탑재한 Arduino nano 로 동일한 계산을 시켜보기로 합니다.

다만, "AES.h" 라이브러리를 include 한다고 제대로 실행되진 않는군요.


	aes.printArray(plain,(bool)true); //print plain with no padding


이유는, ATmega328 의 라이브러리에는 위의 printArray 에서 사용하는 printf_P 함수가 없기 때문입니다. (AES.cpp 에서 정의됨)

ESP32 의 FreeRTOS 에는 C 라이브러리 기본 탑재로 문제 없이 동작하지만, Arduino nano 에서는 동작하지 않습니다.


그리하여, 이를 대신할 function 을 만들어 봤는데, 징그럽게도 동작하지 않더군요.

수많은 삽질을 통해, 배열을 다른 함수의 인자로 전달하려면 배열의 pointer 와 그 배열의 크기를 명시해야 하는 것을 알게 되었습니다.

결국 아래처럼 변경하여 Arduino nano 에서도 동작을 성공 시켰습니다.


...

	showArray(iv, array_size_iv, 1);

...

void showArray (byte *result, int array_length, int hex_conv) {
	for (int i=0; i < array_length; i++) {
		if (hex_conv) {
			Serial.print(result[i], HEX);
		} else {
			Serial.print((char)result[i]);
		}
	}
	Serial.println();
}


최종 소스는 다음과 같습니다.


#include "AES.h"

AES aes ;

unsigned int keyLength [3] = {128, 192, 256}; // key length: 128b, 192b or 256b

byte *key = (unsigned char*)"01234567890123456789012345678901"; // encryption key
byte plain[] = "https://chocoball.tistory.com/entry/Hardware-ESP32-Cryptographic-hardware-acceleration"; // plaintext to encrypt

unsigned long long int myIv = 36753562; // CBC initialization vector; real iv = iv x2 ex: 01234567 = 0123456701234567

void setup () {
	Serial.begin(115200);
}

void loop () {
	for (int i=0; i < 3; i++) {
		Serial.print("- key length [b]: ");
		Serial.println(keyLength [i]);
		aesTest (keyLength[i]);
		delay(2000);
	}
}

void aesTest (int bits) {
	aes.iv_inc();
	
	byte iv [N_BLOCK];
	int plainPaddedLength = sizeof(plain) + (N_BLOCK - ((sizeof(plain)-1) % 16)); // length of padded plaintext [B]
	byte cipher [plainPaddedLength]; // ciphertext (encrypted plaintext)
	byte check [plainPaddedLength]; // decrypted plaintext
	
	aes.set_IV(myIv);
	aes.get_IV(iv);
	
	Serial.print("- encryption time [us]: ");
	unsigned long ms = micros ();
	aes.do_aes_encrypt(plain, sizeof(plain), cipher, key, bits, iv);
	Serial.println(micros() - ms);
	
	aes.set_IV(myIv);
	aes.get_IV(iv);
	
	Serial.print("- decryption time [us]: ");
	ms = micros ();
	aes.do_aes_decrypt(cipher,aes.get_size(),check,key,bits,iv);
	Serial.println(micros() - ms);
	
	Serial.print("- plain:   ");
	//aes.printArray(plain,(bool)true); //print plain with no padding
	int array_size_p = sizeof(plain);
	showArray(plain, array_size_p, 0);
	
	Serial.print("- cipher:  ");
	//aes.printArray(cipher,(bool)false); //print cipher with padding
	int array_size_ci = sizeof(cipher);
	showArray(cipher, array_size_ci, 0);
	
	Serial.print("- check:   ");
	//aes.printArray(check,(bool)true); //print decrypted plain with no padding
	int array_size_ch = sizeof(check);
	showArray(check, array_size_ch, 0);
	
	Serial.print("- iv:      ");
	//aes.printArray(iv,16); //print iv
	int array_size_iv = sizeof(iv);
	showArray(iv, array_size_iv, 1);
	Serial.println("-----------------------------------------------------------------------------------");
}

void showArray (byte *result, int array_length, int hex_conv) {
	for (int i=0; i < array_length; i++) {
		if (hex_conv) {
			Serial.print(result[i], HEX);
		} else {
			Serial.print((char)result[i]);
		}
	}
	Serial.println();
}


아래는 Arduino nano 에서 실행시킨 결과 입니다.

ESP32 에서 Software 로 돌린 AES 결과와 비교시, 걸린 시간 빼곤 완벽히 동일합니다.



ESP32 vs. ATmega328 의 CPU 차에 의한 software AES 계산은 encryption = 27 배, decryption = 20 배 정도 차이 났습니다.


----------------------------------------------
| bits | ESP32 | ATmega328 | diff. (multiply)|
|--------------------------------------------|
| 128  |  159  |   4396    |       27.6      |
|      |  267  |   5388    |       20.1      |
|--------------------------------------------|
| 192  |  189  |   5156    |       27.2      | 
|      |  321  |   6392    |       19.9      |
|--------------------------------------------|
| 256  |  220  |   5964    |       27.1      |
|      |  376  |   7432    |       19.7      |
----------------------------------------------


ESP32 를 찬양하라!





5. Hardware AES - library


마지막으로 ESP32 의 HW AES 를 걸어볼 차례 입니다.

HW accelerator 의 Native library 는 아래 글에서 설명이 잘 되어 있습니다.


* AES-CBC encryption or decryption operation
    - https://tls.mbed.org/api/aes_8h.html#a321834eafbf0dacb36dac343bfd6b35d


요는 mbedtls 함수를 이용하면, HW accelerator 를 사용할 수 있게 되는군요. 키 포인트는 "mbedtls_aes_crypt_cbc" 함수가 되겠습니다.

int mbedtls_aes_crypt_cbc ( mbedtls_aes_context *	ctx,
							int						mode,
							size_t					length,
							unsigned char			iv[16],
							const unsigned char *	input,
							unsigned char *			output
)


각 변수들의 정의 입니다.


---------------------------------------------------------------------------------------------------
| Parameters | Meaning                                                                            |
---------------------------------------------------------------------------------------------------
|    ctx     | The AES context to use for encryption or decryption.                               |
|            | It must be initialized and bound to a key.                                         |
---------------------------------------------------------------------------------------------------
|    mode    | The AES operation: MBEDTLS_AES_ENCRYPT or MBEDTLS_AES_DECRYPT.                     |
---------------------------------------------------------------------------------------------------
|   length   | The length of the input data in Bytes.                                             |
|            | This must be a multiple of the block size (16 Bytes).                              |
---------------------------------------------------------------------------------------------------
|    iv      | Initialization vector (updated after use).                                         |
|            | It must be a readable and writeable buffer of 16 Bytes.                            |
---------------------------------------------------------------------------------------------------
|   input    | The buffer holding the input data. It must be readable and of size length Bytes.   |
---------------------------------------------------------------------------------------------------
|   output   | The buffer holding the output data. It must be writeable and of size length Bytes. |
---------------------------------------------------------------------------------------------------


아래는 실재 구현에 도움이 될 만한 사이트들 입니다. 예제들이 설명되어 있어요.


* ESP32 Arduino: Encryption using AES-128 in ECB mode
    - https://techtutorialsx.com/2018/04/18/esp32-arduino-encryption-using-aes-128-in-ecb-mode/

* ESP32 Arduino Tutorial: Encryption AES128 in ECB mode
    - https://everythingesp.com/esp32-arduino-tutorial-encryption-aes128-in-ecb-mode/

* How to encrypt data with AES-CBC mode
    - https://tls.mbed.org/kb/how-to/encrypt-with-aes-cbc

재미 있는 것은, "mbedtls/aes.h" 의 library 도 동작하지만,

#include "mbedtls/aes.h"


"hwcrypto/aes.h" 라이브러리도 동일한 parameter 와 동작을 보여줍니다. 함수명에 mbedtls 가 붙느냐, esp가 붙느냐의 차이 뿐.


#include "hwcrypto/aes.h"


위의 두 가지 library 는 따로 설치하지 않아도 되는걸 보면, native library 이면서 서로가 copy 버전이 아닐까 하네요.




6. Hardware AES - 확인


위의 Software AES 를 Hardware AES 용으로 변환하면 되겠지만, 아직 지식이 짧은 관계로 아래 소스를 가지고 확인해 봤습니다.

* Example of using hardware AES 256 Crypto in CBC mode on the ESP32 using ESP-IDF
* cnlohr/esp32_aes_example.c

    - https://gist.github.com/cnlohr/96128ef4126bcc878b1b5a7586c624ef

#include "string.h"
#include "stdio.h"
#include "hwcrypto/aes.h"

/*
For Encryption time: 1802.40us (9.09 MB/s) at 16kB blocks.
*/

static inline int32_t _getCycleCount(void) {
	int32_t ccount;
	asm volatile("rsr %0,ccount":"=a" (ccount));
	return ccount;
}

char plaintext[16384];
char encrypted[16384];

void encodetest() {
	uint8_t key[32];
	uint8_t iv[16];
	
	//If you have cryptographically random data in the start of your payload, you do not need
	//an IV. If you start a plaintext payload, you will need an IV.
	memset( iv, 0, sizeof( iv ) );
	
	//Right now, I am using a key of all zeroes. This should change. You should fill the key
	//out with actual data.
	memset( key, 0, sizeof( key ) );
	
	memset( plaintext, 0, sizeof( plaintext ) );
	strcpy( plaintext, "https://chocoball.tistory.com/entry/Hardware-ESP32-Cryptographic-hardware-acceleration" );
	
	//Just FYI - you must be encrypting/decrypting data that is in BLOCKSIZE chunks!!!
	
	esp_aes_context ctx;
	esp_aes_init( &ctx );
	esp_aes_setkey( &ctx, key, 256 );
	int32_t start = _getCycleCount();
	esp_aes_crypt_cbc( &ctx, ESP_AES_ENCRYPT, sizeof(plaintext), iv, (uint8_t*)plaintext, (uint8_t*)encrypted );
	int32_t end = _getCycleCount();
	
	float enctime = (end-start)/240.0;
	Serial.printf( "Encryption time: %.2fus (%f MB/s)\n", enctime, (sizeof(plaintext)*1.0)/enctime );
	//See encrypted payload, and wipe out plaintext.
	
	memset( plaintext, 0, sizeof( plaintext ) );
	
	int i;
	for( i = 0; i < 128; i++ ) {
		Serial.printf( "%02x[%c]%c", encrypted[i], (encrypted[i]>31)?encrypted[i]:' ', ((i&0xf)!=0xf)?' ':'\n' );
	}
	Serial.printf( "\n" );
	
	//Must reset IV.
	//XXX TODO: Research further: I found out if you don't reset the IV, the first block will fail
	//but subsequent blocks will pass. Is there some strange cryptoalgebra going on that permits this?
	Serial.printf( "IV: %02x %02x\n", iv[0], iv[1] );
	memset( iv, 0, sizeof( iv ) );
	
	//Use the ESP32 to decrypt the CBC block.
	Serial.print("- decryption time [us]: ");
	unsigned long ms = micros ();
	esp_aes_crypt_cbc( &ctx, ESP_AES_DECRYPT, sizeof(encrypted), iv, (uint8_t*)encrypted, (uint8_t*)plaintext );
	Serial.println(micros() - ms);
	
	//Verify output
	for( i = 0; i < 128; i++ ) {
		Serial.printf( "%02x[%c]%c", plaintext[i], (plaintext[i]>31)?plaintext[i]:' ', ((i&0xf)!=0xf)?' ':'\n' );
	}
	Serial.printf( "\n" );
	
	esp_aes_free( &ctx );
}

void setup() {
	// put your setup code here, to run once:
	Serial.begin(115200);
	encodetest();
}

void loop() {
	// put your main code here, to run repeatedly:
}


결과는 다음과 같습니다.

위의 Software AES 와 비슷하게 결과를 내도록 소스를 만들면 확연히 비교할 수 있겠으나, 공부를 더 해야 함.


다만, 최종적인 처리 속도는 결코 아래 결과에서 변하지 않는다는 것을 여러 삽질을 통해 발견했으니 이걸로 만족.



Hardware AES 를 서포트하는 전용 명령어 set 이 최적화가 되지 않아, 이런 결과가 나온 것인지 모르겠네요.

지금으로써는 전용 accelerator 를 사용하지 않고, Software AES 를 구현하는 것이 더 속도적인 이득이 있는 듯 보입니다.


단, 여러가지 일을 동시에 처리해야 할 경우, 암호화/복호화 처리 부분만 따로 분리하여 HW accelerator 를 이용한다면, CPU 부하를 분산시켜 효율적인 활용은 가능할 것 같네요.




FIN


혹시, 위의 Hardware AES 결과가 잘못된 방법으로 검증된 것이라면 댓글로 알려주세요.


esp32_technical_reference_manual_en.pdf



Clock 사이클을 바탕으로 이론적인 계산을 해보면 68ns 레벨이라고, 아래 블로그에서 봤는데, 실측과는 많이 다르군요.


* Pwn the ESP32 crypto-core
    - https://limitedresults.com/2019/08/pwn-the-esp32-crypto-core/


Doing simple math, the HW AES-128 encryption process is 68.75ns (@160MHz).


그렇다고 합니다.


And
prev | 1 | next