'Hardware'에 해당되는 글 222건

  1. 2017.09.25 Hardware | Magnetic Charging Cable 을 구매해 보자
  2. 2017.09.19 Hardware | SSD1306 monochrome OLED 를 가지고 VU meter 를 만들어보자
  3. 2017.09.19 Hardware | TSSR 3.5mm audio jack 구매하기
  4. 2017.09.19 Hardware | Adafruit SSD1306 128x64 1.3" monochrome OLED 를 사용해보자
  5. 2017.09.14 Hardware | SSD1306 128x64 monochrome OLED 를 사용해보자
  6. 2017.09.07 Hardware | SSD1331 96x64 full color OLED 를 사용해보자
  7. 2017.09.05 Hardware | FTDI Serial Adapter 를 사용해 보자
  8. 2017.09.05 Hardware | NEO-6M GPS 를 구동해 보자 2
  9. 2017.08.28 Hardware | Probe Clip 을 사용해 보자
  10. 2017.08.20 Hardware | Gyroscope GY-521 MPU-6050 을 사용해 보자

Hardware | Magnetic Charging Cable 을 구매해 보자

|

1. Lightning Charging Cable


iPhone 충전에 사용되는 케이블은 조금 쓰다보면 커넥터쪽이 말리면서 부스러집니다.

그러면서 단선이 생기지요. 요렇게...



Apple 정품으로 주는 번들 케이블이 매번 이정도이면, 뭔가 대책을 만들어야 할 터인데,

맨날 재구매를 하게 만듭니다.



아니면 써드파티 제품을 구매하게 하면서 생태계 공헌?




2. 자석 커넥터


언제부터인가 이 단자의 문제를 해결하기 위해,

아예 단자를 꼽아 놓고 자석으로 붙였다 띠었다 할 수 있도록 만든 아이디어 제품이 나오기 시작했습니다.


제가 자주가는 Kickstarter 의 클라우드 펀딩 사이트에는 2년 전부터 나오기 시작한것 같아요.

지금도 많은 비슷한 제품이 올라와 있네요.



인기가 좋은 제품을 우리 대상인들이 가만 놔둘리가 없겠죠?




3. AliExpress


작년까지만 해도 10 USD 이상으로 꽤 비쌌던 Magnetic Charging Cable 들이 5 USD 아래로 떨어졌습니다.

구매 적기인 듯 합니다. 마침 "정품" 충전 케이블도 망가졌구요. (위 사진)


AliExpress 에서 검색해 보면, 대표적으로 두가지 제품이 나옵니다.

제조사는 동일한 Garas.


케이블 보호를 위해 섬유로 덮혀있는 좋아보이는 제품이 3.54 USD 로 더 싸네요.


* 3.54 USD

https://ko.aliexpress.com/item/Magnet-Cable-For-Iphone-Android-Mobile-Phone-Magnetic-Cable-2IN1-Magnet-Mirco-USB-Cable-Fast-Charger/32804451742.html



위의 제품을 색깔별로 3개를 구입하고,

혹시 모를 차이점을 알고 싶어서, 여분 1개를 아래 비싼 제품으로 주문했습니다.


* 4.66 USD

https://ko.aliexpress.com/item/USB-Type-C-IOS-Android-3IN1-Magnetic-Cable-Type-C-USB-C-Fast-Charge-Adapter-Cable/32803550433.html





4. 도착


한 3주 걸려서 도착하였습니다.

포장은 안쪽에 뽁뽁이 봉투로 왔습니다.


자석부분이 좀 예민해 보이긴 하지만, 무난한 포장입니다.



섬유 케이블로 덮혀있는 제품은, 블링블링 금색/은색/검정으로 하였습니다.



가장 무난한 은색 케이블을 뜯어 봤어요.



Lightning 단자에 붙여넣고, 자석으로 연결되는 부분입니다.



자석이 네오디뮴 (Neodymium) 인듯 합니다. 엄청 잘 붙어요.



내구성은 조금 써봐야 알것 같습니다.

각 라인들은 저렇게 연결되게 해 놨습니다.


각 선을 눌러보면 쿠션처럼 들어가는 것을 보면, 안에 스프링이 들어있나 봅니다.



섬유 케이블로 쌓여있지 않은, "비싼" 버전의 케이블 입니다.

더 비싼 이유는 찾지 못하였습니다.

아마도 예전에 올린 제품으로 가격변동 없이 그대로 판매되고 있던것 같아요. (한놈만 걸려라?)


새로 구매하실꺼면, 보다 저렴하면서 섬유 케이블로 둘러쌓인 버전으로 구매하세요.



섬유 케이블 버전 한곳에 모아서 샷.





5. 구동 영상


실제로 충전한 동영상 입니다.



이미 충전이 완료되어 있으면, 충전 ready 상태의 불빛이 들어왔다가,

다시 조금 사용되면 충전 불빛 (좀 약한) 이 들어왔다가, 왔다갔다 합니다.


논리회로가 좀 약하군요.


충전을 계속해야 하는 경우는, ready 불빛이 충전 불빛으로 변합니다.





FIN


이하 총평입니다.


1. 자석으로 찰싹 붙고 떨어지는 구성으로 너무 너무 편하고 좋음.

2. 충전중이 아닐때에는 ready 상태인데, 무조건 고휘도 LED가 점등되어 있어 눈이 아픔. (저녁에 방 후레쉬 대용)

3. 완충 후, 불빛이 ready / 충전중 상태의 불빛으로 계속 왔다갔다 함.

4. 가격이 저렴하니, 여러군데 뿌려놓고 다니기 편함.

5. 자주 쓰다보면 급하게 분리시켰는데, 나중에 알고보면 단자까지 빠져있슴 !!!


좀 마무리가 아쉽지만, 이 가격에 막 쓰기에는 적당할것 같아요.


또한, iOS 11 로 업데이트하면 3rd party 제품은 동작 안한다 했는데, 잘 동작합니다. :-)

And

Hardware | SSD1306 monochrome OLED 를 가지고 VU meter 를 만들어보자

|

1. SSD1306 OLED


SSD1306 monochrome OLED 0.96" 를 가지고 신나게 놀았습니다.


http://chocoball.tistory.com/entry/Hardware-SSD1306-128x64-monochrome-OLED


그러던 와중에 VU meter 를 구현한 분의 link 를 찾게 됩니다.

여기에 나와있는 모든 내용은 Arduino Forum 에 올린 "stievenart" 라는 분의 글을 따라한 것임을 밝힙니다.


- https://forum.arduino.cc/index.php?topic=403234.0


VU meter 라는 것은 예전에 전축을 보면, 소리의 강도를 나타내는 아나로그 미터기 입니다.


https://en.wikipedia.org/wiki/VU_meter



이런 멋진걸 구현해 놓네요.




2. Layout


위의 링크 그대로 참조해서 연결합니다.


 128X64 OLED | Arduino Nano
----------------------------
     GND     |     GND
     VCC     |     3.3V
     SDA     |     A4
     SDL     |     A5
----------------------------
  TSSR Audio |
----------------------------
    SLEEVE   |     GND
     TIP     |     A0
----------------------------


Pin 연결 모습입니다.





3. Bitmap 만들기


방법은 Bitmap 파일을 128x64 pixel 로 만들고,

그것을 code 화 하면 됩니다.


모든것은 link 에서 설명되어 있습니다.


https://forum.arduino.cc/index.php?topic=403234.0


Bitmap 을 LCD 용의 데이터로 만들어 주는 것은 "Image2GLCD" 이라는 어플이라고 합니다.


http://www.ablab.in/image2glcd-software/


아래 bitmap 파일은 이 project 를 만든 사람이 직접 구성한 사진 입니다.



위의 bitmap 을 LCD용으로 데이터화 하면 아래와 같이 된다고 하네요.

// VU meter background mask image:
static const unsigned char PROGMEM VUMeter[] = { 
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x03, 0x00, 0x60, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x78, 0x09, 0x04, 0x80, 0x21, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x01, 0x98, 0x08, 0x06, 0x03, 0x80, 0x21, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0xA4, 0x10, 0x09, 0x00, 0x80, 0x21, 0x20, 0x07, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0xA4, 0x10, 0x06, 0x03, 0x00, 0x20, 0xC0, 0x00, 0x80, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x71, 0x80, 0xA4, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x0A, 0x40, 0x98, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x3C, 0x00, 0x00,
  0x00, 0x00, 0x3A, 0x40, 0x00, 0x00, 0x02, 0x01, 0x00, 0x40, 0x80, 0x07, 0x00, 0x20, 0x00, 0x00,
  0x00, 0x00, 0x42, 0x40, 0x00, 0x08, 0x02, 0x01, 0x08, 0x40, 0x80, 0x00, 0x00, 0x38, 0x00, 0x00,
  0x00, 0x00, 0x79, 0x80, 0x04, 0x08, 0x02, 0x01, 0x08, 0x81, 0x10, 0x00, 0x00, 0x04, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x04, 0x08, 0x02, 0x01, 0x08, 0x81, 0x11, 0x04, 0x00, 0x38, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x02, 0x04, 0x02, 0x01, 0x08, 0x81, 0x21, 0x04, 0x00, 0x00, 0x08, 0x00,
  0x00, 0x00, 0x00, 0x84, 0x02, 0x04, 0x0F, 0xFF, 0xFF, 0xC3, 0xE2, 0x04, 0x00, 0x00, 0x08, 0x00,
  0x00, 0x00, 0x00, 0xC2, 0x01, 0x07, 0xF0, 0x00, 0x00, 0x3B, 0xFE, 0x08, 0x40, 0x40, 0x08, 0x00,
  0x00, 0xFE, 0x00, 0x62, 0x01, 0xF8, 0x00, 0x00, 0x00, 0x03, 0xFF, 0xE8, 0x40, 0x80, 0x7F, 0x00,
  0x00, 0x00, 0x00, 0x21, 0x1E, 0x00, 0x04, 0x00, 0x80, 0x00, 0x7F, 0xFE, 0x80, 0x80, 0x08, 0x00,
  0x00, 0x00, 0x03, 0x31, 0xE0, 0x00, 0x04, 0x00, 0x80, 0x04, 0x01, 0xFF, 0xC1, 0x00, 0x08, 0x00,
  0x00, 0x00, 0x07, 0x1E, 0x00, 0x40, 0x00, 0x00, 0x00, 0x04, 0x00, 0x1F, 0xFA, 0x00, 0x08, 0x00,
  0x00, 0x00, 0x07, 0xF0, 0x00, 0x40, 0x3B, 0x07, 0x60, 0x00, 0x00, 0x01, 0xFF, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x03, 0x80, 0x00, 0x00, 0x34, 0x81, 0x90, 0xCC, 0xC0, 0x00, 0x3F, 0xC0, 0x00, 0x00,
  0x00, 0x00, 0x0C, 0x00, 0x03, 0x30, 0x0C, 0x82, 0x90, 0x53, 0x20, 0x00, 0x07, 0xF8, 0x00, 0x00,
  0x00, 0x00, 0x70, 0x40, 0x00, 0xC8, 0x3B, 0x02, 0x60, 0x53, 0x20, 0x00, 0x00, 0xFE, 0x00, 0x00,
  0x00, 0x01, 0x80, 0x20, 0x01, 0xC8, 0x00, 0x00, 0x00, 0x4C, 0xC0, 0x00, 0x00, 0x3F, 0x80, 0x00,
  0x00, 0x06, 0x00, 0x00, 0x03, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0xE0, 0x00,
  0x00, 0x08, 0x00, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xFC, 0x00,
  0x00, 0x30, 0x00, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x78, 0x00,
  0x00, 0x00, 0x40, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00,
  0x00, 0x00, 0xA0, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x02, 0x02, 0x30, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x03, 0x06, 0x30, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, 0x8C, 0x30, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x22, 0x00, 0x00, 0x00, 0x00, 0xD8, 0x30, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x70, 0x19, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x20, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};




4. Sketch


제작자가 만든 sketch 입니다.

한가지 주의할 점은, 원 제작자는 "SH1106" 을 사용했으므로, "SSD1306" 으로 모두 바꿔줘야 합니다.

수정할 곳은 3군데 입니다.


Library 는 Adafruit 용을 사용했으므로, 동일하게 사용하면 됩니다.


모두 SSD1306 으로 수정한 sketch 입니다.


/* OLEDMeter was written to utilize any 128x64 display. I have only seen marginal attempts to * animate meters and I hope this one will set a standard. Please feel free to modify and share * this code for any 128x64 LCD or OLED. OLEDMeter sketch was written for use with I2C SH1106. * This code must be modified to work with other display devices. * * Working portion of code was taken from Adafruit Example Sound Level Sketch for the * Adafruit Microphone Amplifier * https://learn.adafruit.com/adafruit-microphone-amplifier-breakout/measuring-sound-levels * * Remaining code was written by Greg Stievenart with no claim to or any images or information * provided in this code. Freely published May 26, 2016. * * Software to convert background mask to 128x64 at: http://www.ablab.in/image2glcd-software/ * * IMPORTANT: Sound source must be grounded to the Arduino or other MCU's to work. Usually the * base sleeve contact on TRS or TRRS connector is the ground. */ #include "Wire.h" // requried to run I2C SH1106 #include "SPI.h" // requried to run I2C SH1106 #include "Adafruit_GFX.h" // https://github.com/adafruit/Adafruit-GFX-Library #include "Adafruit_SSD1306.h" // https://github.com/wonho-maker/Adafruit_SH1106 #define OLED_RESET 4 // reset required for SH1106 Adafruit_SSD1306 display(OLED_RESET); // reset required for SH1106 int analogInput = A0; // analog input for outside audio source int hMeter = 65; // horizontal center for needle animation int vMeter = 85; // vertical center for needle animation (outside of dislay limits) int rMeter = 80; // length of needle animation or arch of needle travel const int sampleWindow = 50; // sample window width in mS (50 mS = 20Hz) unsigned int sample; // VU meter background mask image: static const unsigned char PROGMEM VUMeter[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x03, 0x00, 0x60, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x78, 0x09, 0x04, 0x80, 0x21, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x98, 0x08, 0x06, 0x03, 0x80, 0x21, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xA4, 0x10, 0x09, 0x00, 0x80, 0x21, 0x20, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xA4, 0x10, 0x06, 0x03, 0x00, 0x20, 0xC0, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x71, 0x80, 0xA4, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0A, 0x40, 0x98, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x3C, 0x00, 0x00, 0x00, 0x00, 0x3A, 0x40, 0x00, 0x00, 0x02, 0x01, 0x00, 0x40, 0x80, 0x07, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x42, 0x40, 0x00, 0x08, 0x02, 0x01, 0x08, 0x40, 0x80, 0x00, 0x00, 0x38, 0x00, 0x00, 0x00, 0x00, 0x79, 0x80, 0x04, 0x08, 0x02, 0x01, 0x08, 0x81, 0x10, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x08, 0x02, 0x01, 0x08, 0x81, 0x11, 0x04, 0x00, 0x38, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x04, 0x02, 0x01, 0x08, 0x81, 0x21, 0x04, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x84, 0x02, 0x04, 0x0F, 0xFF, 0xFF, 0xC3, 0xE2, 0x04, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0xC2, 0x01, 0x07, 0xF0, 0x00, 0x00, 0x3B, 0xFE, 0x08, 0x40, 0x40, 0x08, 0x00, 0x00, 0xFE, 0x00, 0x62, 0x01, 0xF8, 0x00, 0x00, 0x00, 0x03, 0xFF, 0xE8, 0x40, 0x80, 0x7F, 0x00, 0x00, 0x00, 0x00, 0x21, 0x1E, 0x00, 0x04, 0x00, 0x80, 0x00, 0x7F, 0xFE, 0x80, 0x80, 0x08, 0x00, 0x00, 0x00, 0x03, 0x31, 0xE0, 0x00, 0x04, 0x00, 0x80, 0x04, 0x01, 0xFF, 0xC1, 0x00, 0x08, 0x00, 0x00, 0x00, 0x07, 0x1E, 0x00, 0x40, 0x00, 0x00, 0x00, 0x04, 0x00, 0x1F, 0xFA, 0x00, 0x08, 0x00, 0x00, 0x00, 0x07, 0xF0, 0x00, 0x40, 0x3B, 0x07, 0x60, 0x00, 0x00, 0x01, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x80, 0x00, 0x00, 0x34, 0x81, 0x90, 0xCC, 0xC0, 0x00, 0x3F, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x00, 0x03, 0x30, 0x0C, 0x82, 0x90, 0x53, 0x20, 0x00, 0x07, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x70, 0x40, 0x00, 0xC8, 0x3B, 0x02, 0x60, 0x53, 0x20, 0x00, 0x00, 0xFE, 0x00, 0x00, 0x00, 0x01, 0x80, 0x20, 0x01, 0xC8, 0x00, 0x00, 0x00, 0x4C, 0xC0, 0x00, 0x00, 0x3F, 0x80, 0x00, 0x00, 0x06, 0x00, 0x00, 0x03, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0xE0, 0x00, 0x00, 0x08, 0x00, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xFC, 0x00, 0x00, 0x30, 0x00, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x78, 0x00, 0x00, 0x00, 0x40, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0xA0, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x02, 0x02, 0x30, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x03, 0x06, 0x30, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, 0x8C, 0x30, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x22, 0x00, 0x00, 0x00, 0x00, 0xD8, 0x30, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x70, 0x19, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x20, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; void setup(){ pinMode(analogInput, INPUT); // analog input for outside audio source display.begin(SSD1306_SWITCHCAPVCC, 0x3C); // needed for SH1106 display display.clearDisplay(); // clears display from any library info displayed } void loop(){ /*********************************************************************** Start of code taken from Adafruit Example Sound Level Sketch for the Adafruit Microphone Amplifier ************************************************************************/ unsigned long startMillis = millis(); // start of sample window unsigned int PeaktoPeak = 0; // peak-to-peak level unsigned int SignalMax = 0; unsigned int SignalMin = 1024; while ( millis() - startMillis < sampleWindow ){ sample = analogRead(analogInput); if (sample < 1024) { if (sample > SignalMax){ SignalMax = sample; // saves just the max levels } else if (sample < SignalMin){ SignalMin = sample; // saves just the min levels } } } PeaktoPeak = SignalMax - SignalMin; // max - min = peak-peak amplitude float MeterValue = PeaktoPeak * 330 / 1024; // convert volts to arrow information /**************************************************** End of code taken from Adafruit Sound Level Sketch *****************************************************/ MeterValue = MeterValue - 34; // shifts needle to zero position display.clearDisplay(); // refresh display for next step display.drawBitmap(0, 0, VUMeter, 128, 64, WHITE); // draws background int a1 = (hMeter + (sin(MeterValue / 57.296) * rMeter)); // meter needle horizontal coordinate int a2 = (vMeter - (cos(MeterValue / 57.296) * rMeter)); // meter needle vertical coordinate display.drawLine(a1, a2, hMeter, vMeter, WHITE); // draws needle display.display(); }




5. 구동


아래는 실제로 구동한 사진 입니다.

iPhone 에서는 Youtube 로 동영상을 play 하였습니다.


곡 제목은 제가 좋아하는 피아니스트인 Valentina Lisitsa 가 연주한, 제가 좋아하는 "베토벤 월광 제3악장" 입니다.

(Beethoven "Moonlight" Sonata op 27 # 2 Mov 3)


https://www.youtube.com/watch?v=zucBfXpCA6s



신기하게 잘 동작하는군요.

선명하게 눈금이 잘 보입니다.



가리키는 바늘도 잘 동작합니다.



눈금이 잘 반응하는게 보이죠?



흠흠... 좋습니다.



아래는 동영상 입니다.





FIN


우선 "stievenart" 님의 글을 구동 부분만 빼고 인용했음을 밝힙니다.

OLED 로 놀 수 있는 방법은 무궁무진한 것 같습니다.

And

Hardware | TSSR 3.5mm audio jack 구매하기

|

1. Safecast bGeigie Nano


시간이 나면, 짬짬이 방사능 측정기를 조립하고 있습니다.


http://chocoball.tistory.com/entry/Hardware-Safecast-bGeigie-Nano-1



조립 메뉴얼을 보면,

option 으로 분류되어 있으며 구성품에 포함되어 있지 않은 부품이 한개 있습니다.


https://github.com/Safecast/bGeigieNanoKit/wiki/Assembly-Manual


이는 "TSSR 3.5mm audio out jack" 으로,

부착하고 싶으면 따로 구매를 해야 합니다.



부품리스트에서 자세히 보면, 아래 제품이라는 것을 알 수 있습니다.


* SparkFun TRRS 3.5mm Jack Breakout

https://www.sparkfun.com/products/11570


bGeigie Nano 구매하고 구성품 받기까지 오래 걸리기도 하거니와

배대지를 이용해야 해서 여간 복잡한게 아니였습니다.


완성도 있게 만들고 싶은데, 이 부품이 빠지면 아쉬울 것 같아, AliExpress 도와줘요~ 해봅니다.




2. TSSR 3.5mm Audio Socket Breakout


AliExpress, 아니 중국은 대단한것 맞습니다.

완벽히 똑같은 카피품을 판매하고 있네요.


https://ko.aliexpress.com/item/3-5mm-Plug-Jack-Stereo-Plastic-Metal-TRRS-Headset-Audio-Socket-Breakout-Board-Extension-Module-Approx/32757253027.html



모양, pin 이름, 크기 모두가 똑같습니다.



여기에 더하여 가격이 1/4 가격입니다.

정품은 3.95 USD, 카피품은 1.09 USD 에 더하여 배송비 무료 입니다.



저같이 돈은 없지만, 전자부품으로 놀고 싶은 사람에게는 AliExpress 는 천국입니다.




3. 도착


아래는 도착샷 입니다.

평범하게 도착했습니다. 한 3주 걸린것 같아요.



앞면입니다.

프린트된 문구도 같네요.



뒷면입니다. TRRS Breakout 보드라고 표시되어 있네요.





4. 테스트


OLED 를 가지고 VU meter 를 만들어 볼 때, 테스트 해봤습니다.


http://chocoball.tistory.com/entry/Hardware-VU-meter-using-SSD1306-monochrome-OLED


Arduino 와의 연결에, Male Pin 납땜을 하고싶지 않아서 Probe Clip 을 사용하였습니다.


http://chocoball.tistory.com/entry/Hardware-Probe-Clip


여기서는 VU meter 를 구성하는 과정은 생략하고 결과만 올립니다.



iPhone 과 연결에 문제가 없네요.

확인 동영상 입니다.





FIN


방사능 측정기는 언제 조립을...


And

Hardware | Adafruit SSD1306 128x64 1.3" monochrome OLED 를 사용해보자

|

1. OLED display


지금가지 AliExpress 에서 쉽게 구할 수 있는 0.95 ~ 0.96 inch 짜리 OLED display 를 가지고 놀았습니다.


* SSD1306 128x64 0.96" monochrome OLED

http://chocoball.tistory.com/entry/Hardware-SSD1306-128x64-monochrome-OLED


* SSD1331 96x64 0.95" full color OLED

- http://chocoball.tistory.com/entry/Hardware-SSD1331-96x64-full-color-OLED


추가로 지금 만들고 있는, "Safecast bGeigie Nano" 의 구성품을 보니, 마침 "Adafruit SSD1306 128x64 1.3inch" 가 달려있네요?!


* Hardware | Safecast bGeigie Nano 를 조립해 보자 - 1

http://chocoball.tistory.com/entry/Hardware-Safecast-bGeigie-Nano-1



이왕 OLED 를 가지고 놀기 시작한거, 끝가지 해보자 하고 구동시켜 봅니다.

조립 전에 제품이 정상작동 하는지도 보고싶구요.


Adafruit 는 거의 레퍼런스급 제품이고, AliExpress 을 통한 짝퉁 중국산이 아닌 제품으로 구동시켜 보는 것은 거의 처음인것 같습니다.




2. 외형


1.3" 다 보니, 지금까지의 0.95" / 0.96" 보다 확실히 큰 것을 느낄 수 있습니다.



뒷면입니다.

프린팅 된것도 선명하고, I2C로 사용시에는 SJ1 / SJ2 를 쇼트시키라고 표현도 되어 있습니다.


"5V READY" 라고 하네요. 자체 레귤레이터가 달려 있습니다.

단, 저는 기기에 무리를 주기 싫기 때문에 무조건 "3.3V" 로 구동시켜 보겠습니다.



그간 테스트 했던 OLED 와의 비교샷 입니다.



화면도 클 뿐만 아니라, pin 갯수도 많습니다.

SPI 대응도 되고 I2C 대응도 모두 될 수 있게 만들어져 있기 때문인것 같아요.





3.Layout


Pin 배열은 아래 link 를 참고하였습니다. (Adafruit 제조사 사이트)


https://learn.adafruit.com/monochrome-oled-breakouts/wiring-1-dot-3-128x64


   Adafruit  |   Arduino
   SSD1306   |   Nano
----------------------------
     Data    |     D9
     Clk     |     D10
     SA0(DC) |     D11
     Rst     |     D13
     CS      |     D12
     3v3     |
     Vin     |     3.3V
     GND     |     GND
----------------------------




실제 배선 모양입니다.





4.Sketch


소스는 Arduino IDE 에서,

아래처럼 "File > Examples > Adafruit SDD1306 > ssd1306_128x64_spi" 를 선택하면 됩니다.



원본 소스는 다음과 같습니다.






5. 구동


실제 구동한 동영상 입니다.

소스 코드와 제품 자체가 모두 Adafruit 가 만든 것이니 당연 잘 됩니다.

거기에 Arduino 진영과 Adafruit 가 협력하여 만든 Arduino Micro 까지 구비하여 구동해 봤습니다. (완전체)



당연 잘 돌아 갑니다.


이제 3형제 다 모여서 구동시켜 봅니다.



확실히 Adafruit 제품의 구동 속도가 제일 빠릅니다.

소스 및 pin 배열을 Hardware SPI 로 변경하고 동작시키면 더 빠르겠지요?




FIN

이제 OLED는 거의 다 사용해 본것 같네.

And

Hardware | SSD1306 128x64 monochrome OLED 를 사용해보자

|

1. 상태 표시


Arduino 를 하다 보면, 표시창을 이용하여 상태를 알고 싶어 집니다.

PC로 말할것 같으면 모니터 같은 것이죠.

반짝반짝 빛나는 LED 도 좋지만, 쿨한 작은 모니터도 좋습니다.


AliExpress 에서 뒤져본 결과, 이런 적은 display 가 있네요!





2. 주문


AliExpress 는 무료 배송이 감사합니다.


https://ko.aliexpress.com/item/1pcs-0-96-blue-0-96-inch-OLED-module-New-128X64-OLED-LCD-LED-Display-Module/32643950109.html





3. 도착


재미 있는 것은, 전원 pin 이름이 보통 "VCC" 인데, "VDD" 로 써져 있으며, "SCL" 을 "SCK" 로 써 있는 부분입니다.

아루래도 라이센스 부분을 피해가기 위해서 그런게 아닐까 합니다만, 사용하는데 지장은 없습니다.



드라이버 칩은 뒤에 가려져서 보이지 않는것 같습니다.



Full color OLED 와의 비교샷 입니다.

Full color OLED 의 자세한 이야기는 아래 link 를 참고해 주세요.


http://chocoball.tistory.com/entry/Hardware-SSD1331-96x64-full-color-OLED


SSD1306 의 datasheet 입니다.


SSD1306.pdf



세로는 확실히 monochrome 이 짧은게 보입니다만, 가로는 같아 보입니다.

확실히 full color OLED 의 보드가 복잡합니다.






4. Layout


빵판에서 Arduino 와 연결은 다음과 같이 하면 됩니다.


    SSD1306  | Arduino Nano
----------------------------
     GND     |     GND
     VDD     |     3.3V
     SCK     |     A5
     SDA     |     A4
----------------------------



아래는 실제 회로 구성입니다.





5. I2C vs. SPI


항상 궁금했던 것은 arduino 와의 interface 에서 I2C 와 SPI 의 차이가 궁금했습니다.

특히 OLED 디바이스는 이 두가지로 극명하게 갈립니다.


SPI 는 비싼 편이고, pin 수가 많습니다.

바로 느낌이 SPI 아 좋아 보이죠? 속도면에서는 그렇습니다.

다만, 동시에 연결은 I2C 가 좋다고 하네요.



아래 link 들에서 참고하였습니다.


http://luma-oled.readthedocs.io/en/latest/hardware.html

https://www.youtube.com/watch?v=vECfvdBLHI0




6. I2C detect


본 OLED device 가 어떤 I2C 어드레스를 갖는지 궁금할 땐, "i2cdetect" 라는 sketch 를 사용하여 확인 가능합니다.


#include "Wire.h"
#include "i2cdetect.h"

void setup() {
	Wire.begin();
	Serial.begin(9600);
	Serial.println("i2cdetect example\n");
	Serial.print("Scanning address range 0x03-0x77\n\n");
}

void loop() {
	i2cdetect(); // default range from 0x03 to 0x77
	delay(2000);
}


결과는 "0x3c" 가 나옵니다.

향후, sketch 의 소스를 보고 해당 값들이 잘 들어갔는지 확인할 수 있습니다.





7. Adafruit Sketch


OLED 의 동작을 확인할 수 있는 sample sketch 는 여러개가 있습니다.

유명한 것은 Adafruit 와 U8g 입니다.


우선 Adafruit 를 이용해 봅니다.

아래 link 에서 library 등을 다운로드 받아 arduino 폴더에 설치합니다.


https://learn.adafruit.com/monochrome-oled-breakouts/arduino-library-and-examples


참고로 제품이 128x64 이므로, "ssd1306_128x64_i2c" 를 선택하면 동작하지 않습니다.

i2c 의 다른 셈플인 "ssd1306_128x32_i2c" 를 선택해야지만 정상으로 동작합니다.


제품 사이즈도 128x64 가 아니라 128x32 가 아닌가라는 생각도 해 봅니다.



Sketch source 는 다음과 같습니다.




아래는 동작 동영상 입니다.

화려한 내용을 보여줍니다. OLED 를 사용한다는 것이 실감납니다.





8. U8g Sketch


그 다음으로 유명한 U8g library 를 사용해 봅니다.

아래 link 를 참고하였습니다.


https://github.com/olikraus/u8glib/



주의할 점은, 범용 library 로 작성되어 있어서,

테스트할 device 의 정확한 방식을 정해줘야 합니다.


아래 스샷처럼 정확하게 선택해 줍니다.

다른 I2C 도 있지만, Fast I2C 를 선택하면 가장 빠른 퍼포먼스를 보여줍니다.



Sketch source 는 다음과 같습니다.


/*

  GraphicsTest.pde
  
  >>> Before compiling: Please remove comment from the constructor of the 
  >>> connected graphics display (see below).
  
  Universal 8bit Graphics Library, https://github.com/olikraus/u8glib/
  
  Copyright (c) 2012, olikraus@gmail.com
  All rights reserved.

  Redistribution and use in source and binary forms, with or without modification, 
  are permitted provided that the following conditions are met:

  * Redistributions of source code must retain the above copyright notice, this list 
    of conditions and the following disclaimer.
    
  * Redistributions in binary form must reproduce the above copyright notice, this 
    list of conditions and the following disclaimer in the documentation and/or other 
    materials provided with the distribution.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 
  CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 
  INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 
  CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 
  NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 
  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
  STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 
  ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  


*/


#include "U8glib.h"

// setup u8g object, please remove comment from one of the following constructor calls
// IMPORTANT NOTE: The following list is incomplete. The complete list of supported 
// devices with all constructor calls is here: https://github.com/olikraus/u8glib/wiki/device
//U8GLIB_NHD27OLED_BW u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_NHD27OLED_2X_BW u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_NHD27OLED_GR u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_NHD27OLED_2X_GR u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_NHD31OLED_BW u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_NHD31OLED_2X_BW u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_NHD31OLED_GR u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_NHD31OLED_2X_GR u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_DOGS102 u8g(13, 11, 10, 9, 8);		// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_DOGM132 u8g(13, 11, 10, 9);		// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_DOGM128 u8g(13, 11, 10, 9);		// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_DOGM128_2X u8g(13, 11, 10, 9);		// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_ST7920_128X64_1X u8g(8, 9, 10, 11, 4, 5, 6, 7, 18, 17, 16);   // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, di=17,rw=16
//U8GLIB_ST7920_128X64_4X u8g(8, 9, 10, 11, 4, 5, 6, 7, 18, 17, 16);   // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, di=17,rw=16
//U8GLIB_ST7920_128X64_1X u8g(18, 16, 17);	// SPI Com: SCK = en = 18, MOSI = rw = 16, CS = di = 17
//U8GLIB_ST7920_128X64_4X u8g(18, 16, 17);	// SPI Com: SCK = en = 18, MOSI = rw = 16, CS = di = 17
//U8GLIB_ST7920_192X32_1X u8g(8, 9, 10, 11, 4, 5, 6, 7, 18, 17, 16);   // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, di=17,rw=16
//U8GLIB_ST7920_192X32_4X u8g(8, 9, 10, 11, 4, 5, 6, 7, 18, 17, 16);   // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, di=17,rw=16
//U8GLIB_ST7920_192X32_1X u8g(18, 16, 17);	// SPI Com: SCK = en = 18, MOSI = rw = 16, CS = di = 17
//U8GLIB_ST7920_192X32_4X u8g(18, 16, 17);	// SPI Com: SCK = en = 18, MOSI = rw = 16, CS = di = 17
//U8GLIB_ST7920_192X32_1X u8g(13, 11, 10);	// SPI Com: SCK = en = 13, MOSI = rw = 11, CS = di = 10
//U8GLIB_ST7920_192X32_4X u8g(10);		// SPI Com: SCK = en = 13, MOSI = rw = 11, CS = di = 10, HW SPI
//U8GLIB_ST7920_202X32_1X u8g(8, 9, 10, 11, 4, 5, 6, 7, 18, 17, 16);   // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, di=17,rw=16
//U8GLIB_ST7920_202X32_4X u8g(8, 9, 10, 11, 4, 5, 6, 7, 18, 17, 16);   // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, di=17,rw=16
//U8GLIB_ST7920_202X32_1X u8g(18, 16, 17);	// SPI Com: SCK = en = 18, MOSI = rw = 16, CS = di = 17
//U8GLIB_ST7920_202X32_4X u8g(18, 16, 17);	// SPI Com: SCK = en = 18, MOSI = rw = 16, CS = di = 17
//U8GLIB_LM6059 u8g(13, 11, 10, 9);		// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_LM6063 u8g(13, 11, 10, 9);		// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_DOGXL160_BW u8g(10, 9);		// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_DOGXL160_GR u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_DOGXL160_2X_BW u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_DOGXL160_2X_GR u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_PCD8544 u8g(13, 11, 10, 9, 8);		// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, Reset = 8
//U8GLIB_PCF8812 u8g(13, 11, 10, 9, 8);		// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, Reset = 8
//U8GLIB_KS0108_128 u8g(8, 9, 10, 11, 4, 5, 6, 7, 18, 14, 15, 17, 16); 		// 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, cs1=14, cs2=15,di=17,rw=16
//U8GLIB_LC7981_160X80 u8g(8, 9, 10, 11, 4, 5, 6, 7,  18, 14, 15, 17, 16); 	// 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, cs=14 ,di=15,rw=17, reset = 16
//U8GLIB_LC7981_240X64 u8g(8, 9, 10, 11, 4, 5, 6, 7,  18, 14, 15, 17, 16); 	// 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, cs=14 ,di=15,rw=17, reset = 16
//U8GLIB_LC7981_240X128 u8g(8, 9, 10, 11, 4, 5, 6, 7,  18, 14, 15, 17, 16); 	// 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, cs=14 ,di=15,rw=17, reset = 16
//U8GLIB_ILI9325D_320x240 u8g(18,17,19,U8G_PIN_NONE,16 );  			// 8Bit Com: D0..D7: 0,1,2,3,4,5,6,7 en=wr=18, cs=17, rs=19, rd=U8G_PIN_NONE, reset = 16
//U8GLIB_SBN1661_122X32 u8g(8,9,10,11,4,5,6,7,14,15, 17, U8G_PIN_NONE, 16); 	// 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 cs1=14, cs2=15,di=17,rw=16,reset = 16
//U8GLIB_SSD1306_128X64 u8g(13, 11, 10, 9);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_SSD1306_128X64 u8g(4, 5, 6, 7);	// SW SPI Com: SCK = 4, MOSI = 5, CS = 6, A0 = 7 (new white HalTec OLED)
//U8GLIB_SSD1306_128X64 u8g(10, 9);		// HW SPI Com: CS = 10, A0 = 9 (Hardware Pins are  SCK = 13 and MOSI = 11)
//U8GLIB_SSD1306_128X64 u8g(U8G_I2C_OPT_NONE|U8G_I2C_OPT_DEV_0);	// I2C / TWI 
U8GLIB_SSD1306_128X64 u8g(U8G_I2C_OPT_DEV_0|U8G_I2C_OPT_NO_ACK|U8G_I2C_OPT_FAST);	// Fast I2C / TWI 
//U8GLIB_SSD1306_128X64 u8g(U8G_I2C_OPT_NO_ACK);	// Display which does not send AC
//U8GLIB_SSD1306_ADAFRUIT_128X64 u8g(13, 11, 10, 9);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_SSD1306_ADAFRUIT_128X64 u8g(10, 9);		// HW SPI Com: CS = 10, A0 = 9 (Hardware Pins are  SCK = 13 and MOSI = 11)
//U8GLIB_SSD1306_128X32 u8g(13, 11, 10, 9);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_SSD1306_128X32 u8g(10, 9);             // HW SPI Com: CS = 10, A0 = 9 (Hardware Pins are  SCK = 13 and MOSI = 11)
//U8GLIB_SSD1306_128X32 u8g(U8G_I2C_OPT_NONE);	// I2C / TWI 
//U8GLIB_SSD1306_64X48 u8g(13, 11, 10, 9);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_SSD1306_64X48 u8g(10, 9);             // HW SPI Com: CS = 10, A0 = 9 (Hardware Pins are  SCK = 13 and MOSI = 11)
//U8GLIB_SSD1306_64X48 u8g(U8G_I2C_OPT_NONE);	// I2C / TWI 
//U8GLIB_SH1106_128X64 u8g(13, 11, 10, 9);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_SH1106_128X64 u8g(4, 5, 6, 7);	// SW SPI Com: SCK = 4, MOSI = 5, CS = 6, A0 = 7 (new blue HalTec OLED)
//U8GLIB_SH1106_128X64 u8g(U8G_I2C_OPT_NONE);	// I2C / TWI 
//U8GLIB_SH1106_128X64 u8g(U8G_I2C_OPT_DEV_0|U8G_I2C_OPT_FAST);	// Dev 0, Fast I2C / TWI
//U8GLIB_SH1106_128X64 u8g(U8G_I2C_OPT_NO_ACK);	// Display which does not send ACK
//U8GLIB_SSD1309_128X64 u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_SSD1327_96X96_GR u8g(U8G_I2C_OPT_NONE);	// I2C
//U8GLIB_SSD1327_96X96_2X_GR u8g(U8G_I2C_OPT_NONE);	// I2C
//U8GLIB_UC1611_DOGM240 u8g(U8G_I2C_OPT_NONE);	// I2C
//U8GLIB_UC1611_DOGM240 u8g(13, 11, 10, 9);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_UC1611_DOGM240 u8g(10, 9);		// HW SPI Com: CS = 10, A0 = 9 (Hardware Pins are  SCK = 13 and MOSI = 11)
//U8GLIB_UC1611_DOGM240 u8g(10, 9);		// HW SPI Com: CS = 10, A0 = 9 (Hardware Pins are  SCK = 13 and MOSI = 11)
//U8GLIB_UC1611_DOGM240 u8g(8, 9, 10, 11, 4, 5, 6, 7, 18, 3, 17, 16);   // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, cs=3, di/a0=17,rw=16
//U8GLIB_UC1611_DOGXL240 u8g(U8G_I2C_OPT_NONE);	// I2C
//U8GLIB_UC1611_DOGXL240 u8g(13, 11, 10, 9);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_UC1611_DOGXL240 u8g(10, 9);		// HW SPI Com: CS = 10, A0 = 9 (Hardware Pins are  SCK = 13 and MOSI = 11)
//U8GLIB_UC1611_DOGXL240 u8g(8, 9, 10, 11, 4, 5, 6, 7, 18, 3, 17, 16);   // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, cs=3, di/a0=17,rw=16
//U8GLIB_NHD_C12864 u8g(13, 11, 10, 9, 8);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_NHD_C12832 u8g(13, 11, 10, 9, 8);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_LD7032_60x32 u8g(13, 11, 10, 9, 8);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_LD7032_60x32 u8g(11, 12, 9, 10, 8);	// SPI Com: SCK = 11, MOSI = 12, CS = 9, A0 = 10, RST = 8  (SW SPI Nano Board)
//U8GLIB_UC1608_240X64 u8g(13, 11, 10, 9, 8);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_UC1608_240X64_2X u8g(13, 11, 10, 9, 8);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_UC1608_240X64 u8g(10, 9, 8);	// HW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_UC1608_240X64_2X u8g(10, 9, 8);	// HW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_UC1608_240X u8g(13, 11, 10, 9, 8);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_UC1608_240X64_2X u8g(13, 11, 10, 9, 8);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_UC1608_240X64 u8g(10, 9, 8);	// HW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_UC1608_240X64_2X u8g(10, 9, 8);	// HW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_T6963_240X128 u8g(8, 9, 10, 11, 4, 5, 6, 7, 14, 15, 17, 18, 16); // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7, cs=14, a0=15, wr=17, rd=18, reset=16
//U8GLIB_T6963_128X128 u8g(8, 9, 10, 11, 4, 5, 6, 7, 14, 15, 17, 18, 16); // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7, cs=14, a0=15, wr=17, rd=18, reset=16
//U8GLIB_T6963_240X64 u8g(8, 9, 10, 11, 4, 5, 6, 7, 14, 15, 17, 18, 16); // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7, cs=14, a0=15, wr=17, rd=18, reset=16
//U8GLIB_T6963_128X64 u8g(8, 9, 10, 11, 4, 5, 6, 7, 14, 15, 17, 18, 16); // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7, cs=14, a0=15, wr=17, rd=18, reset=16
//U8GLIB_HT1632_24X16 u8g(3, 2, 4);		// WR = 3, DATA = 2, CS = 4
//U8GLIB_SSD1351_128X128_332 u8g(13, 11, 8, 9, 7); // Arduino UNO: SW SPI Com: SCK = 13, MOSI = 11, CS = 8, A0 = 9, RESET = 7 (http://electronics.ilsoft.co.uk/ArduinoShield.aspx)
//U8GLIB_SSD1351_128X128_332 u8g(76, 75, 8, 9, 7); // Arduino DUE: SW SPI Com: SCK = 13, MOSI = 11, CS = 8, A0 = 9, RESET = 7 (http://electronics.ilsoft.co.uk/ArduinoShield.aspx)
//U8GLIB_SSD1351_128X128_332 u8g(8, 9, 7); // Arduino: HW SPI Com: SCK = 13, MOSI = 11, CS = 8, A0 = 9, RESET = 7 (http://electronics.ilsoft.co.uk/ArduinoShield.aspx)
//U8GLIB_SSD1351_128X128_HICOLOR u8g(76, 75, 8, 9, 7); // Arduino DUE, SW SPI Com: SCK = 76, MOSI = 75, CS = 8, A0 = 9, RESET = 7 (http://electronics.ilsoft.co.uk/ArduinoShield.aspx)
//U8GLIB_SSD1351_128X128_HICOLOR u8g(8, 9, 7); // Arduino, HW SPI Com: SCK = 76, MOSI = 75, CS = 8, A0 = 9, RESET = 7 (http://electronics.ilsoft.co.uk/ArduinoShield.aspx)
//U8GLIB_SSD1351_128X128GH_332 u8g(8, 9, 7); // Arduino, HW SPI Com: SCK = 76, MOSI = 75, CS = 8, A0 = 9, RESET = 7 (Freetronics OLED)
//U8GLIB_SSD1351_128X128GH_HICOLOR u8g(8, 9, 7); // Arduino, HW SPI Com: SCK = 76, MOSI = 75, CS = 8, A0 = 9, RESET = 7 (Freetronics OLED)

void u8g_prepare(void) {
  u8g.setFont(u8g_font_6x10);
  u8g.setFontRefHeightExtendedText();
  u8g.setDefaultForegroundColor();
  u8g.setFontPosTop();
}

void u8g_box_frame(uint8_t a) {
  u8g.drawStr( 0, 0, "drawBox");
  u8g.drawBox(5,10,20,10);
  u8g.drawBox(10+a,15,30,7);
  u8g.drawStr( 0, 30, "drawFrame");
  u8g.drawFrame(5,10+30,20,10);
  u8g.drawFrame(10+a,15+30,30,7);
}

void u8g_disc_circle(uint8_t a) {
  u8g.drawStr( 0, 0, "drawDisc");
  u8g.drawDisc(10,18,9);
  u8g.drawDisc(24+a,16,7);
  u8g.drawStr( 0, 30, "drawCircle");
  u8g.drawCircle(10,18+30,9);
  u8g.drawCircle(24+a,16+30,7);
}

void u8g_r_frame(uint8_t a) {
  u8g.drawStr( 0, 0, "drawRFrame/Box");
  u8g.drawRFrame(5, 10,40,30, a+1);
  u8g.drawRBox(50, 10,25,40, a+1);
}

void u8g_string(uint8_t a) {
  u8g.drawStr(30+a,31, " 0");
  u8g.drawStr90(30,31+a, " 90");
  u8g.drawStr180(30-a,31, " 180");
  u8g.drawStr270(30,31-a, " 270");
}

void u8g_line(uint8_t a) {
  u8g.drawStr( 0, 0, "drawLine");
  u8g.drawLine(7+a, 10, 40, 55);
  u8g.drawLine(7+a*2, 10, 60, 55);
  u8g.drawLine(7+a*3, 10, 80, 55);
  u8g.drawLine(7+a*4, 10, 100, 55);
}

void u8g_triangle(uint8_t a) {
  uint16_t offset = a;
  u8g.drawStr( 0, 0, "drawTriangle");
  u8g.drawTriangle(14,7, 45,30, 10,40);
  u8g.drawTriangle(14+offset,7-offset, 45+offset,30-offset, 57+offset,10-offset);
  u8g.drawTriangle(57+offset*2,10, 45+offset*2,30, 86+offset*2,53);
  u8g.drawTriangle(10+offset,40+offset, 45+offset,30+offset, 86+offset,53+offset);
}

void u8g_ascii_1() {
  char s[2] = " ";
  uint8_t x, y;
  u8g.drawStr( 0, 0, "ASCII page 1");
  for( y = 0; y < 6; y++ ) {
    for( x = 0; x < 16; x++ ) {
      s[0] = y*16 + x + 32;
      u8g.drawStr(x*7, y*10+10, s);
    }
  }
}

void u8g_ascii_2() {
  char s[2] = " ";
  uint8_t x, y;
  u8g.drawStr( 0, 0, "ASCII page 2");
  for( y = 0; y < 6; y++ ) {
    for( x = 0; x < 16; x++ ) {
      s[0] = y*16 + x + 160;
      u8g.drawStr(x*7, y*10+10, s);
    }
  }
}

void u8g_extra_page(uint8_t a)
{
  if ( u8g.getMode() == U8G_MODE_HICOLOR || u8g.getMode() == U8G_MODE_R3G3B2) {
    /* draw background (area is 128x128) */
    u8g_uint_t r, g, b;
    b = a << 5;
    for( g = 0; g < 64; g++ )
    {
      for( r = 0; r < 64; r++ )
      {
	u8g.setRGB(r<<2, g<<2, b );
	u8g.drawPixel(g, r);
      }
    }
    u8g.setRGB(255,255,255);
    u8g.drawStr( 66, 0, "Color Page");
  }
  else if ( u8g.getMode() == U8G_MODE_GRAY2BIT )
  {
    u8g.drawStr( 66, 0, "Gray Level");
    u8g.setColorIndex(1);
    u8g.drawBox(0, 4, 64, 32);    
    u8g.drawBox(70, 20, 4, 12);
    u8g.setColorIndex(2);
    u8g.drawBox(0+1*a, 4+1*a, 64-2*a, 32-2*a);
    u8g.drawBox(74, 20, 4, 12);
    u8g.setColorIndex(3);
    u8g.drawBox(0+2*a, 4+2*a, 64-4*a, 32-4*a);
    u8g.drawBox(78, 20, 4, 12);
  }
  else
  {
    u8g.drawStr( 0, 12, "setScale2x2");
    u8g.setScale2x2();
    u8g.drawStr( 0, 6+a, "setScale2x2");
    u8g.undoScale();
  }
}


uint8_t draw_state = 0;

void draw(void) {
  u8g_prepare();
  switch(draw_state >> 3) {
    case 0: u8g_box_frame(draw_state&7); break;
    case 1: u8g_disc_circle(draw_state&7); break;
    case 2: u8g_r_frame(draw_state&7); break;
    case 3: u8g_string(draw_state&7); break;
    case 4: u8g_line(draw_state&7); break;
    case 5: u8g_triangle(draw_state&7); break;
    case 6: u8g_ascii_1(); break;
    case 7: u8g_ascii_2(); break;
    case 8: u8g_extra_page(draw_state&7); break;
  }
}

void setup(void) {

  // flip screen, if required
  //u8g.setRot180();

#if defined(ARDUINO)
  pinMode(13, OUTPUT);           
  digitalWrite(13, HIGH);  
#endif
}

void loop(void) {
  
  // picture loop  
  u8g.firstPage();  
  do {
    draw();
  } while( u8g.nextPage() );
  
  // increase the state
  draw_state++;
  if ( draw_state >= 9*8 )
    draw_state = 0;
  
  // rebuild the picture after some delay
  //delay(150);

}


가장 빠르지만, 아래처럼 arduino 의 빨간 led 가 미친듯이 점멸합니다.

아마 process 를 많이 사용하는 듯 합니다.



U8g library 에 "Rotation" 셈플도 있어서 확인해 봤습니다.

글씨도 세로로 바로 회전할 수 있는게 신기합니다.


Sketch 는 다음과 같습니다.


/*

  Rotation.pde
  
  Example code for RotXXX functions.
  
  >>> Before compiling: Please remove comment from the constructor of the 
  >>> connected graphics display (see below).
  
  Universal 8bit Graphics Library, https://github.com/olikraus/u8glib/
  
  Copyright (c) 2012, olikraus@gmail.com
  All rights reserved.

  Redistribution and use in source and binary forms, with or without modification, 
  are permitted provided that the following conditions are met:

  * Redistributions of source code must retain the above copyright notice, this list 
    of conditions and the following disclaimer.
    
  * Redistributions in binary form must reproduce the above copyright notice, this 
    list of conditions and the following disclaimer in the documentation and/or other 
    materials provided with the distribution.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 
  CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 
  INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 
  CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 
  NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 
  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
  STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 
  ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  
  
*/


#include "U8glib.h"

// setup u8g object, please remove comment from one of the following constructor calls
// IMPORTANT NOTE: The following list is incomplete. The complete list of supported 
// devices with all constructor calls is here: https://github.com/olikraus/u8glib/wiki/device
//U8GLIB_NHD27OLED_BW u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_NHD27OLED_2X_BW u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_NHD27OLED_GR u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_NHD27OLED_2X_GR u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_NHD31OLED_BW u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_NHD31OLED_2X_BW u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_NHD31OLED_GR u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_NHD31OLED_2X_GR u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_DOGS102 u8g(13, 11, 10, 9, 8);		// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_DOGM132 u8g(13, 11, 10, 9);		// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_DOGM128 u8g(13, 11, 10, 9);		// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_DOGM128_2X u8g(13, 11, 10, 9);		// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_ST7920_128X64_1X u8g(8, 9, 10, 11, 4, 5, 6, 7, 18, 17, 16);   // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, di=17,rw=16
//U8GLIB_ST7920_128X64_4X u8g(8, 9, 10, 11, 4, 5, 6, 7, 18, 17, 16);   // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, di=17,rw=16
//U8GLIB_ST7920_128X64_1X u8g(18, 16, 17);	// SPI Com: SCK = en = 18, MOSI = rw = 16, CS = di = 17
//U8GLIB_ST7920_128X64_4X u8g(18, 16, 17);	// SPI Com: SCK = en = 18, MOSI = rw = 16, CS = di = 17
//U8GLIB_ST7920_192X32_1X u8g(8, 9, 10, 11, 4, 5, 6, 7, 18, 17, 16);   // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, di=17,rw=16
//U8GLIB_ST7920_192X32_4X u8g(8, 9, 10, 11, 4, 5, 6, 7, 18, 17, 16);   // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, di=17,rw=16
//U8GLIB_ST7920_192X32_1X u8g(18, 16, 17);	// SPI Com: SCK = en = 18, MOSI = rw = 16, CS = di = 17
//U8GLIB_ST7920_192X32_4X u8g(18, 16, 17);	// SPI Com: SCK = en = 18, MOSI = rw = 16, CS = di = 17
//U8GLIB_ST7920_192X32_1X u8g(13, 11, 10);	// SPI Com: SCK = en = 13, MOSI = rw = 11, CS = di = 10
//U8GLIB_ST7920_192X32_4X u8g(10);		// SPI Com: SCK = en = 13, MOSI = rw = 11, CS = di = 10, HW SPI
//U8GLIB_ST7920_202X32_1X u8g(8, 9, 10, 11, 4, 5, 6, 7, 18, 17, 16);   // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, di=17,rw=16
//U8GLIB_ST7920_202X32_4X u8g(8, 9, 10, 11, 4, 5, 6, 7, 18, 17, 16);   // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, di=17,rw=16
//U8GLIB_ST7920_202X32_1X u8g(18, 16, 17);	// SPI Com: SCK = en = 18, MOSI = rw = 16, CS = di = 17
//U8GLIB_ST7920_202X32_4X u8g(18, 16, 17);	// SPI Com: SCK = en = 18, MOSI = rw = 16, CS = di = 17
//U8GLIB_LM6059 u8g(13, 11, 10, 9);		// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_LM6063 u8g(13, 11, 10, 9);		// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_DOGXL160_BW u8g(10, 9);		// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_DOGXL160_GR u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_DOGXL160_2X_BW u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_DOGXL160_2X_GR u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_PCD8544 u8g(13, 11, 10, 9, 8);		// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, Reset = 8
//U8GLIB_PCF8812 u8g(13, 11, 10, 9, 8);		// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, Reset = 8
//U8GLIB_KS0108_128 u8g(8, 9, 10, 11, 4, 5, 6, 7, 18, 14, 15, 17, 16); 		// 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, cs1=14, cs2=15,di=17,rw=16
//U8GLIB_LC7981_160X80 u8g(8, 9, 10, 11, 4, 5, 6, 7,  18, 14, 15, 17, 16); 	// 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, cs=14 ,di=15,rw=17, reset = 16
//U8GLIB_LC7981_240X64 u8g(8, 9, 10, 11, 4, 5, 6, 7,  18, 14, 15, 17, 16); 	// 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, cs=14 ,di=15,rw=17, reset = 16
//U8GLIB_LC7981_240X128 u8g(8, 9, 10, 11, 4, 5, 6, 7,  18, 14, 15, 17, 16); 	// 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, cs=14 ,di=15,rw=17, reset = 16
//U8GLIB_ILI9325D_320x240 u8g(18,17,19,U8G_PIN_NONE,16 );  			// 8Bit Com: D0..D7: 0,1,2,3,4,5,6,7 en=wr=18, cs=17, rs=19, rd=U8G_PIN_NONE, reset = 16
//U8GLIB_SBN1661_122X32 u8g(8,9,10,11,4,5,6,7,14,15, 17, U8G_PIN_NONE, 16); 	// 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 cs1=14, cs2=15,di=17,rw=16,reset = 16
//U8GLIB_SSD1306_128X64 u8g(13, 11, 10, 9);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_SSD1306_128X64 u8g(4, 5, 6, 7);	// SW SPI Com: SCK = 4, MOSI = 5, CS = 6, A0 = 7 (new white HalTec OLED)
//U8GLIB_SSD1306_128X64 u8g(10, 9);		// HW SPI Com: CS = 10, A0 = 9 (Hardware Pins are  SCK = 13 and MOSI = 11)
//U8GLIB_SSD1306_128X64 u8g(U8G_I2C_OPT_NONE|U8G_I2C_OPT_DEV_0);	// I2C / TWI 
U8GLIB_SSD1306_128X64 u8g(U8G_I2C_OPT_DEV_0|U8G_I2C_OPT_NO_ACK|U8G_I2C_OPT_FAST);	// Fast I2C / TWI 
//U8GLIB_SSD1306_128X64 u8g(U8G_I2C_OPT_NO_ACK);	// Display which does not send AC
//U8GLIB_SSD1306_ADAFRUIT_128X64 u8g(13, 11, 10, 9);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_SSD1306_ADAFRUIT_128X64 u8g(10, 9);		// HW SPI Com: CS = 10, A0 = 9 (Hardware Pins are  SCK = 13 and MOSI = 11)
//U8GLIB_SSD1306_128X32 u8g(13, 11, 10, 9);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_SSD1306_128X32 u8g(10, 9);             // HW SPI Com: CS = 10, A0 = 9 (Hardware Pins are  SCK = 13 and MOSI = 11)
//U8GLIB_SSD1306_128X32 u8g(U8G_I2C_OPT_NONE);	// I2C / TWI 
//U8GLIB_SSD1306_64X48 u8g(13, 11, 10, 9);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_SSD1306_64X48 u8g(10, 9);             // HW SPI Com: CS = 10, A0 = 9 (Hardware Pins are  SCK = 13 and MOSI = 11)
//U8GLIB_SSD1306_64X48 u8g(U8G_I2C_OPT_NONE);	// I2C / TWI 
//U8GLIB_SH1106_128X64 u8g(13, 11, 10, 9);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_SH1106_128X64 u8g(4, 5, 6, 7);	// SW SPI Com: SCK = 4, MOSI = 5, CS = 6, A0 = 7 (new blue HalTec OLED)
//U8GLIB_SH1106_128X64 u8g(U8G_I2C_OPT_NONE);	// I2C / TWI 
//U8GLIB_SH1106_128X64 u8g(U8G_I2C_OPT_DEV_0|U8G_I2C_OPT_FAST);	// Dev 0, Fast I2C / TWI
//U8GLIB_SH1106_128X64 u8g(U8G_I2C_OPT_NO_ACK);	// Display which does not send ACK
//U8GLIB_SSD1309_128X64 u8g(13, 11, 10, 9);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_SSD1327_96X96_GR u8g(U8G_I2C_OPT_NONE);	// I2C
//U8GLIB_SSD1327_96X96_2X_GR u8g(U8G_I2C_OPT_NONE);	// I2C
//U8GLIB_UC1611_DOGM240 u8g(U8G_I2C_OPT_NONE);	// I2C
//U8GLIB_UC1611_DOGM240 u8g(13, 11, 10, 9);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_UC1611_DOGM240 u8g(10, 9);		// HW SPI Com: CS = 10, A0 = 9 (Hardware Pins are  SCK = 13 and MOSI = 11)
//U8GLIB_UC1611_DOGM240 u8g(10, 9);		// HW SPI Com: CS = 10, A0 = 9 (Hardware Pins are  SCK = 13 and MOSI = 11)
//U8GLIB_UC1611_DOGM240 u8g(8, 9, 10, 11, 4, 5, 6, 7, 18, 3, 17, 16);   // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, cs=3, di/a0=17,rw=16
//U8GLIB_UC1611_DOGXL240 u8g(U8G_I2C_OPT_NONE);	// I2C
//U8GLIB_UC1611_DOGXL240 u8g(13, 11, 10, 9);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9
//U8GLIB_UC1611_DOGXL240 u8g(10, 9);		// HW SPI Com: CS = 10, A0 = 9 (Hardware Pins are  SCK = 13 and MOSI = 11)
//U8GLIB_UC1611_DOGXL240 u8g(8, 9, 10, 11, 4, 5, 6, 7, 18, 3, 17, 16);   // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, cs=3, di/a0=17,rw=16
//U8GLIB_NHD_C12864 u8g(13, 11, 10, 9, 8);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_NHD_C12832 u8g(13, 11, 10, 9, 8);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_LD7032_60x32 u8g(13, 11, 10, 9, 8);	// SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_LD7032_60x32 u8g(11, 12, 9, 10, 8);	// SPI Com: SCK = 11, MOSI = 12, CS = 9, A0 = 10, RST = 8  (SW SPI Nano Board)
//U8GLIB_UC1608_240X64 u8g(13, 11, 10, 9, 8);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_UC1608_240X64_2X u8g(13, 11, 10, 9, 8);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_UC1608_240X64 u8g(10, 9, 8);	// HW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_UC1608_240X64_2X u8g(10, 9, 8);	// HW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_UC1608_240X u8g(13, 11, 10, 9, 8);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_UC1608_240X64_2X u8g(13, 11, 10, 9, 8);	// SW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_UC1608_240X64 u8g(10, 9, 8);	// HW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_UC1608_240X64_2X u8g(10, 9, 8);	// HW SPI Com: SCK = 13, MOSI = 11, CS = 10, A0 = 9, RST = 8
//U8GLIB_T6963_240X128 u8g(8, 9, 10, 11, 4, 5, 6, 7, 14, 15, 17, 18, 16); // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7, cs=14, a0=15, wr=17, rd=18, reset=16
//U8GLIB_T6963_128X128 u8g(8, 9, 10, 11, 4, 5, 6, 7, 14, 15, 17, 18, 16); // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7, cs=14, a0=15, wr=17, rd=18, reset=16
//U8GLIB_T6963_240X64 u8g(8, 9, 10, 11, 4, 5, 6, 7, 14, 15, 17, 18, 16); // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7, cs=14, a0=15, wr=17, rd=18, reset=16
//U8GLIB_T6963_128X64 u8g(8, 9, 10, 11, 4, 5, 6, 7, 14, 15, 17, 18, 16); // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7, cs=14, a0=15, wr=17, rd=18, reset=16
//U8GLIB_HT1632_24X16 u8g(3, 2, 4);		// WR = 3, DATA = 2, CS = 4
//U8GLIB_SSD1351_128X128_332 u8g(13, 11, 8, 9, 7); // Arduino UNO: SW SPI Com: SCK = 13, MOSI = 11, CS = 8, A0 = 9, RESET = 7 (http://electronics.ilsoft.co.uk/ArduinoShield.aspx)
//U8GLIB_SSD1351_128X128_332 u8g(76, 75, 8, 9, 7); // Arduino DUE: SW SPI Com: SCK = 13, MOSI = 11, CS = 8, A0 = 9, RESET = 7 (http://electronics.ilsoft.co.uk/ArduinoShield.aspx)
//U8GLIB_SSD1351_128X128_332 u8g(8, 9, 7); // Arduino: HW SPI Com: SCK = 13, MOSI = 11, CS = 8, A0 = 9, RESET = 7 (http://electronics.ilsoft.co.uk/ArduinoShield.aspx)
//U8GLIB_SSD1351_128X128_HICOLOR u8g(76, 75, 8, 9, 7); // Arduino DUE, SW SPI Com: SCK = 76, MOSI = 75, CS = 8, A0 = 9, RESET = 7 (http://electronics.ilsoft.co.uk/ArduinoShield.aspx)
//U8GLIB_SSD1351_128X128_HICOLOR u8g(8, 9, 7); // Arduino, HW SPI Com: SCK = 76, MOSI = 75, CS = 8, A0 = 9, RESET = 7 (http://electronics.ilsoft.co.uk/ArduinoShield.aspx)
//U8GLIB_SSD1351_128X128GH_332 u8g(8, 9, 7); // Arduino, HW SPI Com: SCK = 76, MOSI = 75, CS = 8, A0 = 9, RESET = 7 (Freetronics OLED)
//U8GLIB_SSD1351_128X128GH_HICOLOR u8g(8, 9, 7); // Arduino, HW SPI Com: SCK = 76, MOSI = 75, CS = 8, A0 = 9, RESET = 7 (Freetronics OLED)

uint8_t offset = 0;

void draw(void) {
  // graphic commands to redraw the complete screen should be placed here  
  u8g.setFont(u8g_font_unifont);
  u8g.drawStr( 0+0, 20+0, "Hello!");
  u8g.drawStr( 0+2, 20+16, "Hello!");
  
  u8g.drawBox(0, 0, 3, 3);
  u8g.drawBox(u8g.getWidth()-6, 0, 6, 6);
  u8g.drawBox(u8g.getWidth()-9, u8g.getHeight()-9, 9, 9);
  u8g.drawBox(0, u8g.getHeight()-12, 12, 12);  
}

void setup(void) {
}


void rotate(void) {
  static  uint8_t dir = 0;
  static  unsigned long next_rotation = 0;
  
  if ( next_rotation < millis() )
  {
    switch(dir) {
      case 0: u8g.undoRotation(); break;
      case 1: u8g.setRot90(); break;
      case 2: u8g.setRot180(); break;
      case 3: u8g.setRot270(); offset = ( offset + 1 ) & 0x0f; break;
    }
    
    dir++;
    dir &= 3;
    next_rotation = millis();
    next_rotation += 1000;
  }
}

void loop(void) {
  // screen rotation 
  rotate();
  
  // picture loop
  u8g.firstPage();  
  do {
    draw();
  } while( u8g.nextPage() );
  
  // rebuild the picture after some delay
  delay(100);
}

동작 동영상은 다음과 같습니다.





9. U8g2 Sketch


U8g 를 작성하신 분이, 더이상 U8g를 업그래이드 하지 않고 U8g2 를 개발하셨습니다.


https://github.com/olikraus/u8g2/



여기서도 마찬가지로,

보유하고 있는 device 를 로딩할 수 있도록 찾고 comment out 해줍니다.



Sketch 는 다음과 같습니다.


/*

  GraphicsTest.ino

  Universal 8bit Graphics Library (https://github.com/olikraus/u8g2/)

  Copyright (c) 2016, olikraus@gmail.com
  All rights reserved.

  Redistribution and use in source and binary forms, with or without modification, 
  are permitted provided that the following conditions are met:

  * Redistributions of source code must retain the above copyright notice, this list 
    of conditions and the following disclaimer.
    
  * Redistributions in binary form must reproduce the above copyright notice, this 
    list of conditions and the following disclaimer in the documentation and/or other 
    materials provided with the distribution.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 
  CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 
  INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 
  CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 
  NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 
  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
  STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 
  ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  

*/

#include "Arduino.h"
#include "U8g2lib.h"

#ifdef U8X8_HAVE_HW_SPI
#include "SPI.h"
#endif
#ifdef U8X8_HAVE_HW_I2C
#include "Wire.h"
#endif


/*
  U8glib Example Overview:
    Frame Buffer Examples: clearBuffer/sendBuffer. Fast, but may not work with all Arduino boards because of RAM consumption
    Page Buffer Examples: firstPage/nextPage. Less RAM usage, should work with all Arduino boards.
    U8x8 Text Only Example: No RAM usage, direct communication with display controller. No graphics, 8x8 Text only.
    
*/

// Please UNCOMMENT one of the contructor lines below
// U8g2 Contructor List (Frame Buffer)
// The complete list is available here: https://github.com/olikraus/u8g2/wiki/u8g2setupcpp
// Please update the pin numbers according to your setup. Use U8X8_PIN_NONE if the reset pin is not connected
//U8G2_SSD1306_128X64_NONAME_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_SSD1306_128X64_NONAME_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 12, /* dc=*/ 4, /* reset=*/ 6);	// Arduboy (Production, Kickstarter Edition)
//U8G2_SSD1306_128X64_NONAME_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_SSD1306_128X64_NONAME_F_3W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* reset=*/ 8);
U8G2_SSD1306_128X64_NONAME_F_HW_I2C u8g2(U8G2_R0, /* reset=*/ U8X8_PIN_NONE);
//U8G2_SSD1306_128X64_NONAME_F_SW_I2C u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* reset=*/ 8);
//U8G2_SSD1306_128X64_NONAME_F_SW_I2C u8g2(U8G2_R0, /* clock=*/ SCL, /* data=*/ SDA, /* reset=*/ U8X8_PIN_NONE);   // All Boards without Reset of the Display
//U8G2_SSD1306_128X64_NONAME_F_6800 u8g2(U8G2_R0, 13, 11, 2, 3, 4, 5, 6, A4, /*enable=*/ 7, /*cs=*/ 10, /*dc=*/ 9, /*reset=*/ 8);
//U8G2_SSD1306_128X64_NONAME_F_8080 u8g2(U8G2_R0, 13, 11, 2, 3, 4, 5, 6, A4, /*enable=*/ 7, /*cs=*/ 10, /*dc=*/ 9, /*reset=*/ 8);
//U8G2_SSD1306_128X64_VCOMH0_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);	// same as the NONAME variant, but maximizes setContrast() range
//U8G2_SH1106_128X64_NONAME_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_SH1106_128X64_NONAME_F_HW_I2C u8g2(U8G2_R0, /* reset=*/ U8X8_PIN_NONE);
//U8G2_SH1106_128X64_VCOMH0_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);		// same as the NONAME variant, but maximizes setContrast() range
//U8G2_SSD1306_128X32_UNIVISION_F_SW_I2C u8g2(U8G2_R0, /* clock=*/ 21, /* data=*/ 20, /* reset=*/ U8X8_PIN_NONE);   // Adafruit Feather M0 Basic Proto + FeatherWing OLED
//U8G2_SSD1306_128X32_UNIVISION_F_SW_I2C u8g2(U8G2_R0, /* clock=*/ SCL, /* data=*/ SDA, /* reset=*/ U8X8_PIN_NONE);   // Adafruit Feather ESP8266/32u4 Boards + FeatherWing OLED
//U8G2_SSD1306_128X32_UNIVISION_F_HW_I2C u8g2(U8G2_R0, /* reset=*/ U8X8_PIN_NONE);  // Adafruit ESP8266/32u4/ARM Boards + FeatherWing OLED
//U8G2_SSD1306_128X32_UNIVISION_F_HW_I2C u8g2(U8G2_R0, /* reset=*/ U8X8_PIN_NONE, /* clock=*/ SCL, /* data=*/ SDA);   // pin remapping with ESP8266 HW I2C
//U8G2_SSD1306_64X48_ER_F_HW_I2C u8g2(U8G2_R0, /* reset=*/ U8X8_PIN_NONE);   // EastRising 0.66" OLED breakout board, Uno: A4=SDA, A5=SCL, 5V powered
//U8G2_SSD1306_64X32_NONAME_F_HW_I2C u8g2(U8G2_R0, /* reset=*/ U8X8_PIN_NONE); 
//U8G2_SSD1306_96X16_ER_F_HW_I2C u8g2(U8G2_R0, /* reset=*/ U8X8_PIN_NONE);   // EastRising 0.69" OLED
//U8G2_SSD1322_NHD_256X64_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);	// Enable U8G2_16BIT in u8g2.h
//U8G2_SSD1322_NHD_256X64_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);	// Enable U8G2_16BIT in u8g2.h
//U8G2_SSD1325_NHD_128X64_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8); 
//U8G2_SSD1325_NHD_128X64_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);	
//U8G2_SSD1327_SEEED_96X96_F_SW_I2C u8g2(U8G2_R0, /* clock=*/ SCL, /* data=*/ SDA, /* reset=*/ U8X8_PIN_NONE);	// Seeedstudio Grove OLED 96x96
//U8G2_SSD1327_SEEED_96X96_F_HW_I2C u8g2(U8G2_R0, /* reset=*/ U8X8_PIN_NONE);	// Seeedstudio Grove OLED 96x96
//U8G2_SSD1329_128X96_NONAME_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_SSD1329_128X96_NONAME_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_SSD1305_128X32_NONAME_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_SSD1305_128X32_NONAME_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_SSD1309_128X64_NONAME0_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);  
//U8G2_SSD1309_128X64_NONAME0_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);  
//U8G2_SSD1309_128X64_NONAME2_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);  
//U8G2_SSD1309_128X64_NONAME2_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);  
//U8G2_LD7032_60X32_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 11, /* data=*/ 12, /* cs=*/ 9, /* dc=*/ 10, /* reset=*/ 8);	// SW SPI Nano Board
//U8G2_LD7032_60X32_F_4W_SW_I2C u8g2(U8G2_R0, /* clock=*/ 11, /* data=*/ 12, /* reset=*/ U8X8_PIN_NONE);	// NOT TESTED!
//U8G2_UC1701_EA_DOGS102_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_UC1701_EA_DOGS102_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_PCD8544_84X48_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);  // Nokia 5110 Display
//U8G2_PCD8544_84X48_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8); 		// Nokia 5110 Display
//U8G2_PCF8812_96X65_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);	// Could be also PCF8814
//U8G2_PCF8812_96X65_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);						// Could be also PCF8814
//U8G2_KS0108_128X64_F u8g2(U8G2_R0, 8, 9, 10, 11, 4, 5, 6, 7, /*enable=*/ 18, /*dc=*/ 17, /*cs0=*/ 14, /*cs1=*/ 15, /*cs2=*/ U8X8_PIN_NONE, /* reset=*/  U8X8_PIN_NONE); 	// Set R/W to low!
//U8G2_KS0108_ERM19264_F u8g2(U8G2_R0, 8, 9, 10, 11, 4, 5, 6, 7, /*enable=*/ 18, /*dc=*/ 17, /*cs0=*/ 14, /*cs1=*/ 15, /*cs2=*/ 16, /* reset=*/  U8X8_PIN_NONE); 	// Set R/W to low!
//U8G2_ST7920_192X32_F_8080 u8g2(U8G2_R0, 8, 9, 10, 11, 4, 5, 6, 7, /*enable=*/ 18, /*cs=*/ U8X8_PIN_NONE, /*dc=*/ 17, /*reset=*/ U8X8_PIN_NONE);
//U8G2_ST7920_192X32_F_SW_SPI u8g2(U8G2_R0, /* clock=*/ 18 /* A4 */ , /* data=*/ 16 /* A2 */, /* CS=*/ 17 /* A3 */, /* reset=*/ U8X8_PIN_NONE);
//U8G2_ST7920_128X64_F_8080 u8g2(U8G2_R0, 8, 9, 10, 11, 4, 5, 6, 7, /*enable=*/ 18 /* A4 */, /*cs=*/ U8X8_PIN_NONE, /*dc/rs=*/ 17 /* A3 */, /*reset=*/ 15 /* A1 */);	// Remember to set R/W to 0 
//U8G2_ST7920_128X64_F_SW_SPI u8g2(U8G2_R0, /* clock=*/ 18 /* A4 */ , /* data=*/ 16 /* A2 */, /* CS=*/ 17 /* A3 */, /* reset=*/ U8X8_PIN_NONE);
//U8G2_ST7920_128X64_F_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* CS=*/ 10, /* reset=*/ 8);
//U8G2_ST7920_128X64_F_HW_SPI u8g2(U8G2_R0, /* CS=*/ 10, /* reset=*/ 8);
//U8G2_ST7565_EA_DOGM128_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_ST7565_EA_DOGM128_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_ST7565_64128N_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_ST7565_64128N_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_ST7565_EA_DOGM132_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ U8X8_PIN_NONE);	// DOGM132 Shield
//U8G2_ST7565_EA_DOGM132_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ U8X8_PIN_NONE);	// DOGM132 Shield
//U8G2_ST7565_ZOLEN_128X64_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_ST7565_ZOLEN_128X64_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_ST7565_LM6059_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);		// Adafruit ST7565 GLCD
//U8G2_ST7565_LM6059_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);		// Adafruit ST7565 GLCD
//U8G2_ST7565_ERC12864_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_ST7565_ERC12864_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_ST7565_NHD_C12832_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_ST7565_NHD_C12832_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_ST7565_NHD_C12864_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_ST7565_NHD_C12864_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_ST7567_PI_132X64_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 7, /* dc=*/ 9, /* reset=*/ 8);  // Pax Instruments Shield, LCD_BL=6
//U8G2_ST7567_PI_132X64_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 7, /* dc=*/ 9, /* reset=*/ 8);  // Pax Instruments Shield, LCD_BL=6
//U8G2_NT7534_TG12864R_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);  
//U8G2_NT7534_TG12864R_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);  
//U8G2_ST7588_JLX12864_F_SW_I2C u8g2(U8G2_R0, /* clock=*/ SCL, /* data=*/ SDA, /* reset=*/ 5);  
//U8G2_ST7588_JLX12864_F_HW_I2C u8g2(U8G2_R0, /* reset=*/ 5);
//U8G2_IST3020_ERC19264_F_6800 u8g2(U8G2_R0, 44, 43, 42, 41, 40, 39, 38, 37,  /*enable=*/ 28, /*cs=*/ 32, /*dc=*/ 30, /*reset=*/ 31); // Connect WR pin with GND
//U8G2_IST3020_ERC19264_F_8080 u8g2(U8G2_R0, 44, 43, 42, 41, 40, 39, 38, 37,  /*enable=*/ 29, /*cs=*/ 32, /*dc=*/ 30, /*reset=*/ 31); // Connect RD pin with 3.3V
//U8G2_IST3020_ERC19264_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);
//U8G2_LC7981_160X80_F_6800 u8g2(U8G2_R0, 8, 9, 10, 11, 4, 5, 6, 7, /*enable=*/ 18, /*cs=*/ 14, /*dc=*/ 15, /*reset=*/ 16); // Connect RW with GND
//U8G2_LC7981_160X160_F_6800 u8g2(U8G2_R0, 8, 9, 10, 11, 4, 5, 6, 7, /*enable=*/ 18, /*cs=*/ 14, /*dc=*/ 15, /*reset=*/ 16); // Connect RW with GND
//U8G2_LC7981_240X128_F_6800 u8g2(U8G2_R0, 8, 9, 10, 11, 4, 5, 6, 7, /*enable=*/ 18, /*cs=*/ 14, /*dc=*/ 15, /*reset=*/ 16); // Connect RW with GND
//U8G2_SED1520_122X32_F u8g2(U8G2_R0, 8, 9, 10, 11, 4, 5, 6, 7, /*dc=*/ A0, /*e1=*/ A3, /*e2=*/ A2, /* reset=*/  A4); 	// Set R/W to low!
//U8G2_T6963_240X128_F_8080 u8g2(U8G2_R0, 8, 9, 10, 11, 4, 5, 6, 7, /*enable=*/ 17, /*cs=*/ 14, /*dc=*/ 15, /*reset=*/ 16); // Connect RD with +5V, FS0 and FS1 with GND
//U8G2_T6963_256X64_F_8080 u8g2(U8G2_R0, 8, 9, 10, 11, 4, 5, 6, 7, /*enable=*/ 17, /*cs=*/ 14, /*dc=*/ 15, /*reset=*/ 16); // Connect RD with +5V, FS0 and FS1 with GND
//U8G2_SED1330_240X128_F_8080 u8g2(U8G2_R0, 8, 9, 10, 11, 4, 5, 6, 7, /*enable=*/ 17, /*cs=*/ 14, /*dc=*/ 15, /*reset=*/ 16); // Connect RD with +5V, FG with GND
//U8G2_SED1330_240X128_F_6800 u8g2(U8G2_R0, 13, 11, 2, 3, 4, 5, 6, A4, /*enable=*/ 7, /*cs=*/ 10, /*dc=*/ 9, /*reset=*/ 8); // A0 is dc pin!
//U8G2_RA8835_NHD_240X128_F_8080 u8g2(U8G2_R0, 8, 9, 10, 11, 4, 5, 6, 7, /*enable=*/ 17, /*cs=*/ 14, /*dc=*/ 15, /*reset=*/ 16); // Connect /RD = E with +5V, enable is /WR = RW, FG with GND, 14=Uno Pin A0
//U8G2_RA8835_NHD_240X128_F_6800 u8g2(U8G2_R0, 8, 9, 10, 11, 4, 5, 6, 7,  /*enable=*/ 17, /*cs=*/ 14, /*dc=*/ 15, /*reset=*/ 16); // A0 is dc pin, /WR = RW = GND, enable is /RD = E
//U8G2_UC1604_JLX19264_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8); 
//U8G2_UC1604_JLX19264_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);  
//U8G2_UC1608_ERC24064_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);  // SW SPI, Due ERC24064-1 Test Setup
//U8G2_UC1608_ERC240120_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8); 
//U8G2_UC1608_240X128_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);  // SW SPI, Due ERC24064-1 Test Setup
//U8G2_UC1610_EA_DOGXL160_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/  U8X8_PIN_NONE);
//U8G2_UC1610_EA_DOGXL160_F_4W_HW_SPI u8g2(U8G2_R0, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/  U8X8_PIN_NONE);
//U8G2_UC1611_EA_DOGM240_F_2ND_HW_I2C u8g2(U8G2_R0, /* reset=*/ 8);	// Due, 2nd I2C, DOGM240 Test Board
//U8G2_UC1611_EA_DOGM240_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);   // Due, SW SPI, DOGXL240 Test Board
//U8G2_UC1611_EA_DOGXL240_F_2ND_HW_I2C u8g2(U8G2_R0, /* reset=*/ 8);	// Due, 2nd I2C, DOGXL240 Test Board
//U8G2_UC1611_EA_DOGXL240_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);   // Due, SW SPI, DOGXL240 Test Board
//U8G2_SSD1606_172X72_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);		// eInk/ePaper Display
//U8G2_SSD1607_200X200_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);	// eInk/ePaper Display
//U8G2_IL3820_296X128_F_4W_SW_SPI u8g2(U8G2_R0, /* clock=*/ 13, /* data=*/ 11, /* cs=*/ 10, /* dc=*/ 9, /* reset=*/ 8);	// WaveShare 2.9 inch eInk/ePaper Display, enable 16 bit mode for this display!

// End of constructor list


void u8g2_prepare(void) {
  u8g2.setFont(u8g2_font_6x10_tf);
  u8g2.setFontRefHeightExtendedText();
  u8g2.setDrawColor(1);
  u8g2.setFontPosTop();
  u8g2.setFontDirection(0);
}

void u8g2_box_frame(uint8_t a) {
  u8g2.drawStr( 0, 0, "drawBox");
  u8g2.drawBox(5,10,20,10);
  u8g2.drawBox(10+a,15,30,7);
  u8g2.drawStr( 0, 30, "drawFrame");
  u8g2.drawFrame(5,10+30,20,10);
  u8g2.drawFrame(10+a,15+30,30,7);
}

void u8g2_disc_circle(uint8_t a) {
  u8g2.drawStr( 0, 0, "drawDisc");
  u8g2.drawDisc(10,18,9);
  u8g2.drawDisc(24+a,16,7);
  u8g2.drawStr( 0, 30, "drawCircle");
  u8g2.drawCircle(10,18+30,9);
  u8g2.drawCircle(24+a,16+30,7);
}

void u8g2_r_frame(uint8_t a) {
  u8g2.drawStr( 0, 0, "drawRFrame/Box");
  u8g2.drawRFrame(5, 10,40,30, a+1);
  u8g2.drawRBox(50, 10,25,40, a+1);
}

void u8g2_string(uint8_t a) {
  u8g2.setFontDirection(0);
  u8g2.drawStr(30+a,31, " 0");
  u8g2.setFontDirection(1);
  u8g2.drawStr(30,31+a, " 90");
  u8g2.setFontDirection(2);
  u8g2.drawStr(30-a,31, " 180");
  u8g2.setFontDirection(3);
  u8g2.drawStr(30,31-a, " 270");
}

void u8g2_line(uint8_t a) {
  u8g2.drawStr( 0, 0, "drawLine");
  u8g2.drawLine(7+a, 10, 40, 55);
  u8g2.drawLine(7+a*2, 10, 60, 55);
  u8g2.drawLine(7+a*3, 10, 80, 55);
  u8g2.drawLine(7+a*4, 10, 100, 55);
}

void u8g2_triangle(uint8_t a) {
  uint16_t offset = a;
  u8g2.drawStr( 0, 0, "drawTriangle");
  u8g2.drawTriangle(14,7, 45,30, 10,40);
  u8g2.drawTriangle(14+offset,7-offset, 45+offset,30-offset, 57+offset,10-offset);
  u8g2.drawTriangle(57+offset*2,10, 45+offset*2,30, 86+offset*2,53);
  u8g2.drawTriangle(10+offset,40+offset, 45+offset,30+offset, 86+offset,53+offset);
}

void u8g2_ascii_1() {
  char s[2] = " ";
  uint8_t x, y;
  u8g2.drawStr( 0, 0, "ASCII page 1");
  for( y = 0; y < 6; y++ ) {
    for( x = 0; x < 16; x++ ) {
      s[0] = y*16 + x + 32;
      u8g2.drawStr(x*7, y*10+10, s);
    }
  }
}

void u8g2_ascii_2() {
  char s[2] = " ";
  uint8_t x, y;
  u8g2.drawStr( 0, 0, "ASCII page 2");
  for( y = 0; y < 6; y++ ) {
    for( x = 0; x < 16; x++ ) {
      s[0] = y*16 + x + 160;
      u8g2.drawStr(x*7, y*10+10, s);
    }
  }
}

void u8g2_extra_page(uint8_t a)
{
  u8g2.drawStr( 0, 0, "Unicode");
  u8g2.setFont(u8g2_font_unifont_t_symbols);
  u8g2.setFontPosTop();
  u8g2.drawUTF8(0, 24, "☀ ☁");
  switch(a) {
    case 0:
    case 1:
    case 2:
    case 3:
      u8g2.drawUTF8(a*3, 36, "☂");
      break;
    case 4:
    case 5:
    case 6:
    case 7:
      u8g2.drawUTF8(a*3, 36, "☔");
      break;
  }
}

#define cross_width 24
#define cross_height 24
static const unsigned char cross_bits[] U8X8_PROGMEM  = {
  0x00, 0x18, 0x00, 0x00, 0x24, 0x00, 0x00, 0x24, 0x00, 0x00, 0x42, 0x00, 
  0x00, 0x42, 0x00, 0x00, 0x42, 0x00, 0x00, 0x81, 0x00, 0x00, 0x81, 0x00, 
  0xC0, 0x00, 0x03, 0x38, 0x3C, 0x1C, 0x06, 0x42, 0x60, 0x01, 0x42, 0x80, 
  0x01, 0x42, 0x80, 0x06, 0x42, 0x60, 0x38, 0x3C, 0x1C, 0xC0, 0x00, 0x03, 
  0x00, 0x81, 0x00, 0x00, 0x81, 0x00, 0x00, 0x42, 0x00, 0x00, 0x42, 0x00, 
  0x00, 0x42, 0x00, 0x00, 0x24, 0x00, 0x00, 0x24, 0x00, 0x00, 0x18, 0x00, };

#define cross_fill_width 24
#define cross_fill_height 24
static const unsigned char cross_fill_bits[] U8X8_PROGMEM  = {
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x00, 0x18, 0x64, 0x00, 0x26, 
  0x84, 0x00, 0x21, 0x08, 0x81, 0x10, 0x08, 0x42, 0x10, 0x10, 0x3C, 0x08, 
  0x20, 0x00, 0x04, 0x40, 0x00, 0x02, 0x80, 0x00, 0x01, 0x80, 0x18, 0x01, 
  0x80, 0x18, 0x01, 0x80, 0x00, 0x01, 0x40, 0x00, 0x02, 0x20, 0x00, 0x04, 
  0x10, 0x3C, 0x08, 0x08, 0x42, 0x10, 0x08, 0x81, 0x10, 0x84, 0x00, 0x21, 
  0x64, 0x00, 0x26, 0x18, 0x00, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, };

#define cross_block_width 14
#define cross_block_height 14
static const unsigned char cross_block_bits[] U8X8_PROGMEM  = {
  0xFF, 0x3F, 0x01, 0x20, 0x01, 0x20, 0x01, 0x20, 0x01, 0x20, 0x01, 0x20, 
  0xC1, 0x20, 0xC1, 0x20, 0x01, 0x20, 0x01, 0x20, 0x01, 0x20, 0x01, 0x20, 
  0x01, 0x20, 0xFF, 0x3F, };

void u8g2_bitmap_overlay(uint8_t a) {
  uint8_t frame_size = 28;

  u8g2.drawStr(0, 0, "Bitmap overlay");

  u8g2.drawStr(0, frame_size + 12, "Solid / transparent");
  u8g2.setBitmapMode(false /* solid */);
  u8g2.drawFrame(0, 10, frame_size, frame_size);
  u8g2.drawXBMP(2, 12, cross_width, cross_height, cross_bits);
  if(a & 4)
    u8g2.drawXBMP(7, 17, cross_block_width, cross_block_height, cross_block_bits);

  u8g2.setBitmapMode(true /* transparent*/);
  u8g2.drawFrame(frame_size + 5, 10, frame_size, frame_size);
  u8g2.drawXBMP(frame_size + 7, 12, cross_width, cross_height, cross_bits);
  if(a & 4)
    u8g2.drawXBMP(frame_size + 12, 17, cross_block_width, cross_block_height, cross_block_bits);
}

void u8g2_bitmap_modes(uint8_t transparent) {
  const uint8_t frame_size = 24;

  u8g2.drawBox(0, frame_size * 0.5, frame_size * 5, frame_size);
  u8g2.drawStr(frame_size * 0.5, 50, "Black");
  u8g2.drawStr(frame_size * 2, 50, "White");
  u8g2.drawStr(frame_size * 3.5, 50, "XOR");
  
  if(!transparent) {
    u8g2.setBitmapMode(false /* solid */);
    u8g2.drawStr(0, 0, "Solid bitmap");
  } else {
    u8g2.setBitmapMode(true /* transparent*/);
    u8g2.drawStr(0, 0, "Transparent bitmap");
  }
  u8g2.setDrawColor(0);// Black
  u8g2.drawXBMP(frame_size * 0.5, 24, cross_width, cross_height, cross_bits);
  u8g2.setDrawColor(1); // White
  u8g2.drawXBMP(frame_size * 2, 24, cross_width, cross_height, cross_bits);
  u8g2.setDrawColor(2); // XOR
  u8g2.drawXBMP(frame_size * 3.5, 24, cross_width, cross_height, cross_bits);
}

uint8_t draw_state = 0;

void draw(void) {
  u8g2_prepare();
  switch(draw_state >> 3) {
    case 0: u8g2_box_frame(draw_state&7); break;
    case 1: u8g2_disc_circle(draw_state&7); break;
    case 2: u8g2_r_frame(draw_state&7); break;
    case 3: u8g2_string(draw_state&7); break;
    case 4: u8g2_line(draw_state&7); break;
    case 5: u8g2_triangle(draw_state&7); break;
    case 6: u8g2_ascii_1(); break;
    case 7: u8g2_ascii_2(); break;
    case 8: u8g2_extra_page(draw_state&7); break;
    case 9: u8g2_bitmap_modes(0); break;
    case 10: u8g2_bitmap_modes(1); break;
    case 11: u8g2_bitmap_overlay(draw_state&7); break;
  }
}


void setup(void) {
  u8g2.begin();
}

void loop(void) {
  // picture loop  
  u8g2.clearBuffer();
  draw();
  u8g2.sendBuffer();
  
  // increase the state
  draw_state++;
  if ( draw_state >= 12*8 )
    draw_state = 0;

  // deley between each page
  delay(100);

}

속도는 U8g 의 Fast I2C 정도는 아니지만,

그리 느린 속도는 아니면서 arduino 의 led 는 점멸하지 않습니다.





10. Reference


위에서 열거되지 않은 부분은, 주로 아래 link 들을 참고하였습니다.


https://forum.arduino.cc/index.php?topic=403234.0

https://github.com/squix78/esp8266-oled-ssd1306

http://www.instructables.com/id/Monochrome-096-i2c-OLED-display-with-arduino-SSD13/




FIN

역시 사람은 오감으로 느껴야지만 이해가 갑니다.

And

Hardware | SSD1331 96x64 full color OLED 를 사용해보자

|

1. Full Color OLED


Arduino 에 연결하여 표현해 주는 OLED 가 있습니다.

센서값을 보여주는 모니터링용으로는 괜찮아 보입니다.


Monochrome 제품은 이미 테스트 해봤습니다.


http://chocoball.tistory.com/entry/Hardware-SSD1306-128x64-monochrome-OLED


0.95 크기를 가지는 OLED 는 대략 세가지가 있는것 같습니다.


하나는 위의 Monochrome 이고,

두번째는 윗쪽이 노란색이고 밑에가 파란색인 제품.




마지막은 full color 제품 입니다.



AliExpress 에서 찾아보니 6.84 USD 로 판매되고 있습니다.


https://ko.aliexpress.com/item/0-95-Inch-SPI-Full-Color-OLED-Display-DIY-Module-96x64-LCD-For-Arduino-SSD1306-Driver/32790785282.html



재미있는 것은, 제품이 SSD1306 드라이버라고 사이트에 올라와 있는데,

SSD1306 은 Monochrome 제품용이고, full color 는 SSD1331 드라이버 입니다.

결국 사이트에 잘못 올린거지요.


SSD1331 용 full color OLED 는 10 USD 정도 인데, SSD1306 으로 검색되는 full color OLED 는 7 USD 정도 이니,

검색은 SSD1306 으로 되는 full color OLED 를 구매하면 이득입니다.


이번 글에서도 "SSD1331" 드라이버에 맞는 sketch 를 이용했습니다.




2. 도착


도착샷은 다음과 같습니다.



창이 달린 모니터 있다 보니, 뽁뽁이로 잘 쌓여서 왔습니다.



오호이. 상태는 좋아 보입니다.



제품의 줌샷 입니다.



뒷면입니다.


SSD1331 datasheet 는 다음과 같습니다.


SSD1331_1.2.pdf


아래 link 를 많이 참조 했습니다.


http://educ8s.tv/arduino-color-oled-display-tutorial/




3. Pinout


Arduino 와 pin 연결 정보 입니다.


    SSD1331  | Arduino Nano
----------------------------
     GND     |     GND
     VCC     |     3.3V
     SCL     |     D13
     SDA     |     D11
     RES     |     D9
     DC      |     D8
     CS      |     D10
----------------------------


Layout 은 다음과 같습니다.



참조 Youtube 동영상에서 캡춰한 내용이 가장 잘 맞는것 같네요.






3. Library


아래 GitHub 에서 SSD1331 라이브러리를 다운로드 받습니다.


https://github.com/adafruit/Adafruit-SSD1331-OLED-Driver-Library-for-Arduino


"/Arduino/Library/" 폴더에 다운로드 받은 파일을 넣어도 좋고,

아래처럼 Arduino IDE 에서 검색해서 install 할 수도 있습니다.


"Sketch > Include Library > Manage Libraries..." 에서 "gfx" 와 "SSD1331" 을 검색하면 install 되어 있으면 OK.

없으면 install 하면 됩니다.



"gfx" 를 검색하니, Adafruit GFX 가 이미 깔려 있네요.



"SSD1331" 을 검색하니, Adafruit SSD1331 OLED Driver Library for Arduino 도 이미 깔려 있습니다.





4. Sketch


"File > Examples > Adafruit SSD1331 OLED Driver Library for Arduino > test" 의 소스 입니다.


/*************************************************** 
  This is a example sketch demonstrating the graphics
  capabilities of the SSD1331 library  for the 0.96" 
  16-bit Color OLED with SSD1331 driver chip

  Pick one up today in the adafruit shop!
  ------> http://www.adafruit.com/products/684

  These displays use SPI to communicate, 4 or 5 pins are required to  
  interface
  Adafruit invests time and resources providing this open source code, 
  please support Adafruit and open-source hardware by purchasing 
  products from Adafruit!

  Written by Limor Fried/Ladyada for Adafruit Industries.  
  BSD license, all text above must be included in any redistribution
 ****************************************************/


// You can use any (4 or) 5 pins 
#define sclk 13
#define mosi 11
#define cs   10
#define rst  9
#define dc   8


// Color definitions
#define	BLACK           0x0000
#define	BLUE            0x001F
#define	RED             0xF800
#define	GREEN           0x07E0
#define CYAN            0x07FF
#define MAGENTA         0xF81F
#define YELLOW          0xFFE0  
#define WHITE           0xFFFF

#include "Adafruit_GFX.h"
#include "Adafruit_SSD1331.h"
#include "SPI.h"

// Option 1: use any pins but a little slower
Adafruit_SSD1331 display = Adafruit_SSD1331(cs, dc, mosi, sclk, rst);  

// Option 2: must use the hardware SPI pins 
// (for UNO thats sclk = 13 and sid = 11) and pin 10 must be 
// an output. This is much faster - also required if you want
// to use the microSD card (see the image drawing example)
//Adafruit_SSD1331 display = Adafruit_SSD1331(cs, dc, rst);

float p = 3.1415926;

void setup(void) {
  Serial.begin(9600);
  Serial.print("hello!");
  display.begin();

  Serial.println("init");
  uint16_t time = millis();
  display.fillScreen(BLACK);
  time = millis() - time;
  
  Serial.println(time, DEC);
  delay(500);
   
  lcdTestPattern();
  delay(1000);
  
  display.fillScreen(BLACK);
  display.setCursor(0,0);
  display.print("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur adipiscing ante sed nibh tincidunt feugiat. Maecenas enim massa");
  delay(1000);

  // tft print function!
  tftPrintTest();
  delay(2000);
  
  //a single pixel
  display.drawPixel(display.width()/2, display.height()/2, GREEN);
  delay(500);
  
  // line draw test
  testlines(YELLOW);
  delay(500);    
  
  // optimized lines
  testfastlines(RED, BLUE);
  delay(500);    
 
  testdrawrects(GREEN);
  delay(1000);

  testfillrects(YELLOW, MAGENTA);
  delay(1000);

  display.fillScreen(BLACK);
  testfillcircles(10, BLUE);
  testdrawcircles(10, WHITE);
  delay(1000);

  testroundrects();
  delay(500);
  
  testtriangles();
  delay(500);
  
  Serial.println("done");
  delay(1000);
}

void loop() {
}

void testlines(uint16_t color) {
   display.fillScreen(BLACK);
   for (int16_t x=0; x < display.width()-1; x+=6) {
     display.drawLine(0, 0, x, display.height()-1, color);
   }
   for (int16_t y=0; y < display.height()-1; y+=6) {
     display.drawLine(0, 0, display.width()-1, y, color);
   }
   
   display.fillScreen(BLACK);
   for (int16_t x=0; x < display.width()-1; x+=6) {
     display.drawLine(display.width()-1, 0, x, display.height()-1, color);
   }
   for (int16_t y=0; y < display.height()-1; y+=6) {
     display.drawLine(display.width()-1, 0, 0, y, color);
   }
   
   display.fillScreen(BLACK);
   for (int16_t x=0; x < display.width()-1; x+=6) {
     display.drawLine(0, display.height()-1, x, 0, color);
   }
   for (int16_t y=0; y < display.height()-1; y+=6) {
     display.drawLine(0, display.height()-1, display.width()-1, y, color);
   }

   display.fillScreen(BLACK);
   for (int16_t x=0; x < display.width()-1; x+=6) {
     display.drawLine(display.width()-1, display.height()-1, x, 0, color);
   }
   for (int16_t y=0; y < display.height()-1; y+=6) {
     display.drawLine(display.width()-1, display.height()-1, 0, y, color);
   }
   
}

void testdrawtext(char *text, uint16_t color) {
  display.setTextSize(1);
  display.setTextColor(WHITE);
  display.setCursor(0,0);

  for (uint8_t i=0; i < 168; i++) {
    if (i == '\n') continue;
    display.write(i);
    if ((i > 0) && (i % 21 == 0))
      display.println();
  }    
}

void testfastlines(uint16_t color1, uint16_t color2) {
   display.fillScreen(BLACK);
   for (int16_t y=0; y < display.height()-1; y+=5) {
     display.drawFastHLine(0, y, display.width()-1, color1);
   }
   for (int16_t x=0; x < display.width()-1; x+=5) {
     display.drawFastVLine(x, 0, display.height()-1, color2);
   }
}

void testdrawrects(uint16_t color) {
 display.fillScreen(BLACK);
 for (int16_t x=0; x < display.height()-1; x+=6) {
   display.drawRect((display.width()-1)/2 -x/2, (display.height()-1)/2 -x/2 , x, x, color);
 }
}

void testfillrects(uint16_t color1, uint16_t color2) {
 display.fillScreen(BLACK);
 for (int16_t x=display.height()-1; x > 6; x-=6) {
   display.fillRect((display.width()-1)/2 -x/2, (display.height()-1)/2 -x/2 , x, x, color1);
   display.drawRect((display.width()-1)/2 -x/2, (display.height()-1)/2 -x/2 , x, x, color2);
 }
}

void testfillcircles(uint8_t radius, uint16_t color) {
  for (uint8_t x=radius; x < display.width()-1; x+=radius*2) {
    for (uint8_t y=radius; y < display.height()-1; y+=radius*2) {
      display.fillCircle(x, y, radius, color);
    }
  }  
}

void testdrawcircles(uint8_t radius, uint16_t color) {
  for (int16_t x=0; x < display.width()-1+radius; x+=radius*2) {
    for (int16_t y=0; y < display.height()-1+radius; y+=radius*2) {
      display.drawCircle(x, y, radius, color);
    }
  }  
}

void testtriangles() {
  display.fillScreen(BLACK);
  int color = 0xF800;
  int t;
  int w = display.width()/2;
  int x = display.height();
  int y = 0;
  int z = display.width();
  for(t = 0 ; t <= 15; t+=1) {
    display.drawTriangle(w, y, y, x, z, x, color);
    x-=4;
    y+=4;
    z-=4;
    color+=100;
  }
}

void testroundrects() {
  display.fillScreen(BLACK);
  int color = 100;
  int i;
  int t;
  for(t = 0 ; t <= 4; t+=1) {
  int x = 0;
  int y = 0;
  int w = display.width();
  int h = display.height();
    for(i = 0 ; i <= 24; i+=1) {
    display.drawRoundRect(x, y, w, h, 5, color);
    x+=2;
    y+=3;
    w-=4;
    h-=6;
    color+=1100;
  }
  color+=100;
  }
}

void tftPrintTest() {
  display.fillScreen(BLACK);
  display.setCursor(0, 5);
  display.setTextColor(RED);  
  display.setTextSize(1);
  display.println("Hello World!");
  display.setTextColor(YELLOW, GREEN);
  display.setTextSize(2);
  display.print("Hello Wo");
  display.setTextColor(BLUE);
  display.setTextSize(3);
  display.print(1234.567);
  delay(1500);
  display.setCursor(0, 5);
  display.fillScreen(BLACK);
  display.setTextColor(WHITE);
  display.setTextSize(0);
  display.println("Hello World!");
  display.setTextSize(1);
  display.setTextColor(GREEN);
  display.print(p, 5);
  display.println(" Want pi?");
  display.print(8675309, HEX); // print 8,675,309 out in HEX!
  display.print(" Print HEX");
  display.setTextColor(WHITE);
  display.println("Sketch has been");
  display.println("running for: ");
  display.setTextColor(MAGENTA);
  display.print(millis() / 1000);
  display.setTextColor(WHITE);
  display.print(" seconds.");
}

void mediabuttons() {
 // play
  display.fillScreen(BLACK);
  display.fillRoundRect(25, 10, 78, 60, 8, WHITE);
  display.fillTriangle(42, 20, 42, 60, 90, 40, RED);
  delay(500);
  // pause
  display.fillRoundRect(25, 90, 78, 60, 8, WHITE);
  display.fillRoundRect(39, 98, 20, 45, 5, GREEN);
  display.fillRoundRect(69, 98, 20, 45, 5, GREEN);
  delay(500);
  // play color
  display.fillTriangle(42, 20, 42, 60, 90, 40, BLUE);
  delay(50);
  // pause color
  display.fillRoundRect(39, 98, 20, 45, 5, RED);
  display.fillRoundRect(69, 98, 20, 45, 5, RED);
  // play color
  display.fillTriangle(42, 20, 42, 60, 90, 40, GREEN);
}

/**************************************************************************/
/*! 
    @brief  Renders a simple test pattern on the LCD
*/
/**************************************************************************/
void lcdTestPattern(void)
{
  uint32_t i,j;
  display.goTo(0, 0);
  
  for(i=0;i<64;i++)
  {
    for(j=0;j<96;j++)
    {
      if(i>55){display.writeData(WHITE>>8);display.writeData(WHITE);}
      else if(i>47){display.writeData(BLUE>>8);display.writeData(BLUE);}
      else if(i>39){display.writeData(GREEN>>8);display.writeData(GREEN);}
      else if(i>31){display.writeData(CYAN>>8);display.writeData(CYAN);}
      else if(i>23){display.writeData(RED>>8);display.writeData(RED);}
      else if(i>15){display.writeData(MAGENTA>>8);display.writeData(MAGENTA);}
      else if(i>7){display.writeData(YELLOW>>8);display.writeData(YELLOW);}
      else {display.writeData(BLACK>>8);display.writeData(BLACK);}
    }
  }
}




5. 동작


위의 sketch 를 업로드 하고 pin 을 잘 연결하면, 아래와 같은 동작을 보여줍니다.



글씨, 배경색, 크기 등 여러가지를 확인해 볼 수 있습니다.



그림들도 잘 표현이 됩니다. 물론 컬러로.



SPI 프로토콜이라서 그런지, Monochorme 의 I2C 인터페이스보다는 확실히 빠른 성늘을 보여주네요.

다음은 동영상 입니다.





FIN


화면의 상하단의 색이 다른 OLED 는 SSD1306 을 사용한지라,

부분 컬러이긴 하지만, 더이상 OLED 는 구매하지 않아도 될 듯 해요.

And

Hardware | FTDI Serial Adapter 를 사용해 보자

|

1. Flash Programming


무선 WIFI 모듈인 ESP8266 을 사용하여 wireless speaker 를 제작하려고 준비하고 있습니다.




그러기 위해서는 ESP8266 의 펌웨어를 프로그래밍 해줘야 하는데,

이를 위해서는 Serial Converter / Adapter 가 필요합니다.


이 Serial Adapter 는, 펌웨어 관련된 모든것에 사용되는 것 같습니다.

미리 알았더라면, 예전에 Flashrom writer 시에 사용했을 터인데...


http://chocoball.tistory.com/entry/Hardware-flashROM-fix


이런 다방면의 활용성을 가지고 있으므로, 한두개 구비해 놓은게 좋을것 같다고 생각되어

한꺼번에 2개를 구입합니다.


동일한 제품을 구매하면 재미가 없으므로, 각각 다른 chip 을 사용한 adapter 를 구매합니다.




2. Silicon Labs CP2102


FT232 대용으로 나온 chip 입니다.

동작은 완벽히 호환되었습니다.


Spec. Sheet 는 다음과 같습니다.


CP2102-9.pdf


기존의 FT232RL breakout board 와 비교하여 pinout 들이 간략화 되어 있어

보드 자체의 크기도 작고, chip 도 소형화 되어 있습니다.


구매는 아래 link 에서 진행했어요.


https://ko.aliexpress.com/item/CJMCU-CP2102-MICRO-USB-to-UART-TTL-Module-6Pin-Serial-Converter-UART-STC-Replace-FT232-NEW/32801557756.html


가격은 1.02 USD 로 부담이 없고 무료 배송입니다.



아래는 사이트에서 보여준 사진 입니다.

Chip 에 SILABS CP2102 라고 적혀 있는 것을 확인할 수 있습니다.



도착샷 들입니다.



보통은 USB 인터페이스 지만, 이 부품은 microUSB 입니다.



뒷면입니다.



Windows 에 USB를 통하여 연결하면, 알아서 드라이버를 잡아 줍니다.



장치 관리자에서 COM port 를 꼭 확인하여, 나중에 어플에서 잡아줄 때 참고하면 되겠습니다.






3. FTDI FT232RL


그 이름 그대로의 제품 입니다.

Chip 은 FT232RL 이네요.



가격은 1.65 USD 로 역시 저렴합니다.


Spec. Sheet 는 다음과 같습니다.


FT232RL.pdf


참고로 fake FT232RL chip 이 존재한다 합니다. Fake 제품이라고 해서 문제는 발생되지 않는다고 합니다.

다만, 원래 생산자의 시장을 잠식하면서, 막대한 손해를 끼치겠죠.


가장 단순한 판변법은, chip 상면에 세겨진 각인이 laser 로 쓰였는지, 프린팅 되었는지의 구분이라고 하네요.


https://zeptobars.com/en/read/FTDI-FT232RL-real-vs-fake-supereal


Chip 을 줌업 해봤습니다.

잘 모르겠지만 laser 로 쓰여진 듯 합니다. 그 사이에 fake chip 생산자의 기술이 올라갔을지 모르겠습니다.



구입은 아래 link 에서 진행했습니다.


https://ko.aliexpress.com/item/1pcs-FT232RL-FTDI-USB-3-3V-5-5V-to-TTL-Serial-Adapter-Module-forArduino-Mini-Port/32650148276.html


아래는 도착샷 입니다.


일반적인 포장으로 잘 왔습니다.

정전기 방지 포장도 되어 있습니다.



FTDI 용으로는 가장 많이 쓰이는 보드가 아닐까 합니다.



재미있는걸 하나 발견했습니다.
뒷면에 제품명이 프린팅 되어 있는데, 도착한 제품에는 "YP-05" 라고 되어 있고,
제품 소개 사이트에는 "FTD1232" 이라고 표기되어 있습니다.

일단 다른것도 그렇지만, FTDI 의 "I" 부분을 숫자 "1" 로 고쳐쓴 센스가 엿보입니다. 라이센스 문제를 피해가기 위함이겠죠?



아래는 제품 소개 사이트 뒷면 :-D



Windows driver 는 자동으로 잡힙니다.



처음에는 "FT232R USB UART" 로 인식한 후, driver 가 인스톨 완료 되면 아래와 같이, "USB Serial Converter / Port" 로 변경됩니다.



장치 관리자에서는 "USB Serial Port" 라고 표시됩니다.






4. 구동


NEO-6M GPS 와 연결해본 사진 입니다.

사진에는 FT232RL 만 보이지만, CP2102 로도 완벽히 동일하게 작동하였습니다.



NEO-6M 과의 자세한 동작 영상들은 아래 link 에서 확인해 보세요.


http://chocoball.tistory.com/entry/Software-ublox-GPS-application





FIN

정신을 차려 보니, 점점 많은 부품들이 제 주위에 쌓여가고 있습니다.

And

Hardware | NEO-6M GPS 를 구동해 보자

|

1. GPS


우리 생활에 이제는 필수가 된 GPS.

모바일 기기라면 이제 GPS 는 어디든 달려 있는 시대 입니다.



이게 Arduino 용의 breakout board 로 나와 줬네요.

센서에 목말라 있는 저로써는 꼭 구동해 보고싶은 센서 입니다.





2. 주문


AliExpress 에서 검색해 보면, 대략 3가지 제품으로 나뒵니다.

- Drone 용 소형 GPS : NEO-M8N

- 저가용 GPS : NEO-6M

- 그 외 안테나, 연장선 등의 부품


대략 저가용 GPS 인 NEO-6M 을 빼면, NEO-M8N 인데, 1만원이 넘어가는 나름 고가 센서가 됩니다.

우선 구동만을 확인해 볼 예정이므로, NEO-6M 을 구입합니다.


* NEO-6M 본체


https://ko.aliexpress.com/item/2pcs-lot-GY-NEO6MV2-new-GPS-module-with-Flight-Control-Flight-Control-EEPROM-MWC-APM2-5/1811853522.html



6천원 정도면, 밥 한끼 정도의 가격이므로, 취미의 즐거움을 위해 희생해 봅니다.


구입은 Arduino 취미를 시작한 작년 말에 구입했지만,

정작 사용해 보기까지는 시간이 걸렸습니다.


그 이유는 달려있는 안테나가 너무 짧아, 연장선을 구입하고, 다른 센서가지고 놀면서 늘어졌습니다.

GPS 는 좀 진득하게 사용해 봐야 할 것 같았거든요.



* 안테나 연장


https://ko.aliexpress.com/item/2016-New-GPS-Active-Remote-Antenna-Aerial-Connector-1575-42MHz-SMA-connector-For-3M/32616362445.html


PC 에 연결하여 확인하려면 외부로 가지고 나가야 하는데, laptop 이 필수 입니다.

구동 완료가 될 때까지 매번 밖에 나갈 수는 없으므로 연장 안테나를 구입합니다.



* 커넥터


https://ko.aliexpress.com/item/RF-pigtail-jumper-cable-6in-6-IPX-IPEX-I-PEX-U-FL-MHF-4-to-SMA/32357824395.html


연장 안테나의 끝 단자인 SMA Male connector 랑 breakout board 와의 연결을 위해,

SMA female connector 를 구입합니다.



다만 여기서 사고가 발생합니다.

바로 breakout board 에 있는 단자 크기를 몰라, 그냥 주문했더니, 맞지 않았습니다.


원래 breakout board 의 안테나 단자를 감싸야 하는데, 그 속으로 들어가버릴 정도로 작았습니다.

구매 사이트 사진에는 MHF-4 도 표시되어 있지만, 사실은 U. FL 규격을 구입해야 했었습니다.



결국 U. FL 규격의 SMA female 단자도 나중에 구입하지만,

또 기다려야 하니 좀이 쑤셔서 그냥 진행해 보기로 합니다.




3. 도착


도착은 3주정도 걸린 듯 합니다.



구성품은 NEO-6M breakout board 와 U. FL 커넥터가 달린 안테나 로 되어 있습니다.



여기에 문제의 "SMA female : MHF-4" 점퍼 입니다.



배송은 참 잘 왔습니다.



MHF-4 connector 는 WIFI 모듈에 자주 쓰이는 규격이라 아니, 나중에 또 쓸 일이 있겠죠?



판매자의 별 5개 요청 편지.

AliExpress 입점상들도 경쟁이 치열해지고 평가에 의해 매출이 달라지므로 신경을 많이 쓰는것 같습니다.

역시 글로벌로 장사를 하면, 사용자 피드백의 중요함이 사업에 있어서 크리티컬 하다는 것을 알 수 있습니다.


장사꾼들인 중국인들에게는 배울게 많습니다.



연장 안테나 모듀입니다.



배송은 잘 왔습니다.



이쪽 면이 자석으로 되어 있어서 차량이나 난간에 잘 고정이 됩니다.



난간에는 이렇게 설치 되었습니다.

왼쪽의 안테나는 FlightAware 용으로 세워진 안테나 입니다.

http://chocoball.tistory.com/entry/Hardware-PiAware-FlightAware





4. MHF-4


문제의 MHF-4 단자에 대해 살펴보기로 합니다.

구성품으로 달려있던 안테나 단자와 비교샷 입니다.


크기 자체의 차이로 따져 보면, 구성품의 connector 는 "U. FL" 규격으로 보입니다.

자세히 들여다 보면, 중심부에 꽂히는 심의 크기는 양쪽다 (MHF-4 / U. FL) 같아 보입니다.

여기서 착안하여 그냥 사용해 보기로 합니다.



원래는 이렇게 연결해서 사용됩니다.



U. FL 규격으로, breakout board 와 연결된 모습입니다.

외곽 금속을 커넥터가 잘 감싸 줘서 확실하게 고정이 되는 구조입니다.

이렇게 연결하면 손톱으로 튕기지 않는 한, 잘 붙어 있습니다.



SMA female : MHF-4 규격의 점퍼와 연결한 모습입니다.

Breakout 보드쪽 커넥터의 외경이 점퍼 외경을 반대로 감싸는 구조가 됩니다.

전기적 신호는 문제 없겠지만, 많이 헐겁습니다. 조금만 힘이 가해져도 금방 분리가 되어 버립니다. (진행하면서 가장 스트레스)



다시 주문한 "SMA-female : U. FL" 단자는 아직 도착하지 않았지만,

아래 구성처럼 연결하여 진행합니다.





5. Arduino 와 연결


Pin 들을 납땜해서 사용해도 되지만, 향후 어떤 보드에 실장하게 될 지 모르는지라,

납땜하지 않고 Probe Clip 을 이용하여 연결합니다.


Probe Clip 에 대해서는 다음 link 를 참조해 주세요.

http://chocoball.tistory.com/entry/Hardware-Probe-Clip



Arduino 와 연결된 모습입니다.





6. Layout


Pin 연결 정보 입니다.


    NEO-6M   | Arduino Nano
----------------------------
     VCC     |     3.3V
     RX      |     D9
     TX      |     D10
     GND     |     GND
----------------------------


보드 연결선은 다음과 같이 하면 됩니다.





7. Libaray 및 Sketch


여기서부터는 아래 사이트를 참고 하였습니다.


http://www.instructables.com/id/How-to-Communicate-Neo-6M-GPS-to-Arduino/


사전에 필요한 Library 는 다음 두가지 입니다.

미리 Arduino Library 폴더에 카피해 놓습니다.


* TinyGPS

http://arduiniana.org/libraries/tinygps/

https://github.com/mikalhart/TinyGPS


* SoftwareSerial

https://cdn.instructables.com/ORIG/F8C/OHR4/IVHQK4BI/F8COHR4IVHQK4BI.rar


위의 두 Library 가 준비되었다면, 아래 sketch 를 업로드해서 구동시킬 수 있습니다.


/*********************
 *10 to GPS Module TX*
 *09 to GPS Module RX*
 *********************/

#include "SoftwareSerial.h"
#include "TinyGPS.h"

SoftwareSerial mySerial(10, 9);
TinyGPS gps;

void gpsdump(TinyGPS &gps);
void printFloat(double f, int digits = 2);

void setup() {
	// Open serial communications and wait for port to open:
	Serial.begin(9600);
	// set the data rate for the SoftwareSerial port
	mySerial.begin(9600);
	delay(1000);
	Serial.println("uBlox Neo 6M");
	Serial.print("Testing TinyGPS library v. "); Serial.println(TinyGPS::library_version());
	Serial.println("by Mikal Hart");
	Serial.println();
	Serial.print("Sizeof(gpsobject) = "); 
	Serial.println(sizeof(TinyGPS));
	Serial.println(); 
}

void loop() // run over and over
{
	bool newdata = false;
	unsigned long start = millis();
	// Every 5 seconds we print an update
	while (millis() - start < 5000) {
		if (mySerial.available()) {
			char c = mySerial.read();
			//Serial.print(c); // uncomment to see raw GPS data
			if (gps.encode(c)) {
				newdata = true;
				break; // uncomment to print new data immediately!
			}
		}
	}
  
	if (newdata) {
		Serial.println("Acquired Data");
		Serial.println("-------------");
		gpsdump(gps);
		Serial.println("-------------");
		Serial.println();
	}
}

void gpsdump(TinyGPS &gps) {
  long lat, lon;
  float flat, flon;
  unsigned long age, date, time, chars;
  int year;
  byte month, day, hour, minute, second, hundredths;
  unsigned short sentences, failed;

  gps.get_position(&lat, &lon, &age);
  Serial.print("Lat/Long(10^-5 deg): "); Serial.print(lat); Serial.print(", "); Serial.print(lon); 
  Serial.print(" Fix age: "); Serial.print(age); Serial.println("ms.");
  
  // On Arduino, GPS characters may be lost during lengthy Serial.print()
  // On Teensy, Serial prints to USB, which has large output buffering and
  //   runs very fast, so it's not necessary to worry about missing 4800
  //   baud GPS characters.

  gps.f_get_position(&flat, &flon, &age);
  Serial.print("Lat/Long(float): "); printFloat(flat, 5); Serial.print(", "); printFloat(flon, 5);
    Serial.print(" Fix age: "); Serial.print(age); Serial.println("ms.");

  gps.get_datetime(&date, &time, &age);
  Serial.print("Date(ddmmyy): "); Serial.print(date); Serial.print(" Time(hhmmsscc): ");
    Serial.print(time);
  Serial.print(" Fix age: "); Serial.print(age); Serial.println("ms.");

  gps.crack_datetime(&year, &month, &day, &hour, &minute, &second, &hundredths, &age);
  Serial.print("Date: "); Serial.print(static_cast(month)); Serial.print("/"); 
    Serial.print(static_cast(day)); Serial.print("/"); Serial.print(year);
  Serial.print("  Time: "); Serial.print(static_cast(hour+8));  Serial.print(":"); //Serial.print("UTC +08:00 Malaysia");
    Serial.print(static_cast(minute)); Serial.print(":"); Serial.print(static_cast(second));
    Serial.print("."); Serial.print(static_cast(hundredths)); Serial.print(" UTC +08:00 Malaysia");
  Serial.print("  Fix age: ");  Serial.print(age); Serial.println("ms.");

  Serial.print("Alt(cm): "); Serial.print(gps.altitude()); Serial.print(" Course(10^-2 deg): ");
    Serial.print(gps.course()); Serial.print(" Speed(10^-2 knots): "); Serial.println(gps.speed());
  Serial.print("Alt(float): "); printFloat(gps.f_altitude()); Serial.print(" Course(float): ");
    printFloat(gps.f_course()); Serial.println();
  Serial.print("Speed(knots): "); printFloat(gps.f_speed_knots()); Serial.print(" (mph): ");
    printFloat(gps.f_speed_mph());
  Serial.print(" (mps): "); printFloat(gps.f_speed_mps()); Serial.print(" (kmph): ");
    printFloat(gps.f_speed_kmph()); Serial.println();

  gps.stats(&chars, &sentences, &failed);
  Serial.print("Stats: characters: "); Serial.print(chars); Serial.print(" sentences: ");
    Serial.print(sentences); Serial.print(" failed checksum: "); Serial.println(failed);
}

void printFloat(double number, int digits) {
	// Handle negative numbers
	if (number < 0.0) {
		Serial.print('-');
		number = -number;
	}

  // Round correctly so that print(1.999, 2) prints as "2.00"
  double rounding = 0.5;
  for (uint8_t i=0; i 0)
    Serial.print("."); 

  // Extract digits from the remainder one at a time
  while (digits-- > 0) 
  {
    remainder *= 10.0;
    int toPrint = int(remainder);
    Serial.print(toPrint);
    remainder -= toPrint;
  }
}





8. 구동


실제 구동 영상입니다.

신호를 받기 시작하면 GPS의 LED 도 깜빡이면서 구동되고 있다는 것을 알 수 있습니다.



Arduino IDE 의 Serial Monitor 에서 아래와 같은 정보가 스크롤 됩니다.



정보를 보면 제대로 GPS 위성과 통신을 하는 것 같습니다.

확실히 베란다 난간에 GPS 안테나를 붙이니 정보를 잘 받네요.





FIN

일상 생활에서 GPS는 필수 기기 입니다.

눈에 보이지 않았던 중간 단계를 확인할 수 있어서 좋았습니다.





Update

"SMA Female - U. FL" 어뎁터가 도착했습니다.


딱 봐도 굵기가 다릅니다.

역시 신호와 전류는 두꺼운게 좋습니다.



커넥터 부분을 비교해 봤어요.

제일 밑에가 부속으로 딸려 있던 안테나, 중간이 잘못 구입한 MHF-3 규격, 윗부분이 새로 구입한 U. FL 규격 사진입니다.



전체 비교샷 입니다.



NEO-6M 에 바로 결속해 봤습니다.

딱 맞습니다. 손톱으로 의도적으로 뜯지 않는 한, 튼튼하게 결속되어 있습니다.



And

Hardware | Probe Clip 을 사용해 보자

|

1. Probe Clip


여러가지 sensor 들을 구입하다 보면, male pin 들이 납땜되지 않은 상태로 배달이 됩니다.



이건 이것대로 좋은 것 같습니다.

빵판을 이용하여 동작 확인이 아닌, 실장을 할 때에는 male pin 이 걸리적 거릴 수도 있고,

구부러진 pin 을 사용하는게 좋을 때도 있는 등, 상황이 바뀌기 때문이지요.


이를 해결하기 위해, Probe Clip 을 구매해 보기로 합니다.




2. Big Size Round Single Hook Clip for Test Probe


이름이 긴건 AliExpress 에서 그렇게 팔기 때문입니다.

사이즈가 Big Size 라고는 하지만, 사진상으로 적당해 보입니다.




다른 부품들과 함께 잘 도착했습니다.



구성물이 10개가 들어 있어서 왠만한 jumper 사용시 갯수는 충분할 것 같습니다.



개별 줌샷 입니다. 모양은 아주 단순합니다.



밑부분은 jumper 선을 체결할 수 있는 금속과 그 선을 밖으로 뺄 수 있는 구멍이 뚫려 있습니다.



Jumper 선을 체결할 수 있도록 되어 있습니다.

다만, 조금 복잡한 구조로 되어 있는데, 궂이 이럴 필요가 있나 싶습니다.

아마 좀더 복잡한 구조가 있는데, 간단하게 만들어 팔고 있는게 아닌가 합니다.

생산할 때는 기존 판금을 사용하면 추가 비용은 안들 터이니까요.



밑부분을 누르면 이렇게 hook 이 튀어 나옵니다. 이부분을 원하는 부분에 걸면 전기적으로 연결되는 것입니다.





3. Big Size 의 문제


Big Size 인 만큼, sensor 들의 pin 체결 구멍에 조금 큰 것이 문제입니다.

Male pin 의 간격은 2.54mm 인데, 두개를 동시에 연결하려면 hook 부분의 금속 자체도 잘 안들어갈 뿐만 아니라

뒤에 누르는 둥근 부분도 커서 간섭이 큽니다.


매번 귀찮다 하더라도 참고 쓰다가 좀더 작은 사이즈가 없나 찾아보게 됩니다.




4. Mini Grabber SMD IC Hook Probe Jumber Test Clip


제품명이 긴것은 그렇게 느끼는 것 뿐입니다.

가격은 비슷하나 갯수가 6개로 파는 제품을 찾았습니다.



이 제품은 SMD IC 다리들에게 걸 수 있도록 만들었다 하니,

원하는 크기에 딱 맞을 듯 합니다.


이런 시행착오을 겪어야 하는게 좀 번거롭습니다만, 이게 인생이라고 생각하고 주문합니다.




5. 도착


요즘 AliExpress 는 대략 2주 전후로 도착합니다.

예전에는 한달은 기본이었는데 말이죠.



궁딩이 부분을 누르면 앞에 hook 모양이 아닌, 집게 모양처럼 튀어 나옵니다.

의외로 잡는 힘이 쎄서 잘 고정되게 만들었습니다.

물론 크기도 작습니다.



궁딩이 부분의 플라스틱을 분리하면, 전선을 결합할 수 있는 구멍이 나옵니다.

구조도 단순하네요.





6. 전선 연결


각각의 색에 맞추어 jumper 선을 골라 주었습니다.

원래 양쪽에 pin 이 달려있는 breadboard 전용 jumber 입니다만, pin 부분을 잘라내고 피복을 벗겨 구리선을 노출시킨 후,

probe clip 의 동그란 구멍이 있는 밑부분에 말아주고 납땜을 해주었습니다.


이쁘게 되었네요! 만족스럽습니다.





7. 활용해 보기


구조적으로 Transistor Tester 에 Resistor Network 같은 부품은 측정할 수 없었으나,

이제 쉽게 할 수 있어요!


http://chocoball.tistory.com/entry/Hardware-Transistor-Tester



이제 원하는 sensor 에 직접 연결해 봅니다.



Big Size Clip 으로 했을 때에는 접점이 틀어지거나, 간섭으로 체결이 빠졌었는데,

이 mini Grabber 는 잡는 부분이 작을 뿐만 아니라, 힘도 좋아서 좀더 잘 고정이 됩니다.



전선 반대쪽에 pin 이 연결되어 있어서, 이제 편하게 빵판 활용시 sensor 동작 확인을 할 수 있을것 같습니다.




FIN

자 다음 센서~

And

Hardware | Gyroscope GY-521 MPU-6050 을 사용해 보자

|

1. 자이로스코프

드론이 호버링 하거나 방향전환시 필요한 것중 하나가 위치조정 일것 같습니다.

이런걸 가능하게 하는 센서가 "Gyroscope" 입니다.


중력을 이용하여 자기의 위치를 알아내는 센서가 있다는게 신기할 따름입니다.


AliExpress 에서 검색해 보니, 1.09 USD!

아니 이게 1천원정도의 가격이라고?





2. 원리

전통적인 자이로스코프는 원심력을 이용하여 자기 위치를 되돌리려는 성질의 기구가 있습니다.


https://en.wikipedia.org/wiki/Gyroscope



그런데, 이걸 반도체 안에 센싱하는 소자들을 구성하여 만든게 이번에 리뷰하는 MPU-6050 칩 입니다.



그림을 보니 중력을 이용하여 이동하는 mass 와 그걸 감지하고 원래로 복원하려고 하는 스프링 등으로 구성되었네요.

그 작은 반도체 안에 저런것을 만들어 놓다니. 거기에 1.09 USD 처럼 저렴하다는 것에 한번 더 놀랍니다.


관련된 문서는 아래에 있습니다.


IMU_Wk8.pptx

AN3461.pdf


어디선가 배웠던 "코리올리 효과"를 이용한다고 합니다.

참고해 보세요.




3. 도착

잊을만 하고 있을 적에 도착하였습니다. 거진 한달 걸린것 같습니다.



구성품은 GY-521 breakout 보드와 구부러진 male pin 과 똑바른 male pin 이 각각 들어있습니다.



Chip 을 보면 중간 부분에 희미하게 MPU-6050 이라고 적혀 있습니다.



좀더 잘 찍힌 제품사진은 다음과 같습니다. Chip 이 잘 보이네요.



뒷면입니다. MPU-6050 을 사용한 제품 중, 가장 일반적으로 사용되는 breakout 보드는 GY-521 이라고 하네요.



구부러진 pin 을 납땜하느냐, 곧은 pin 을 납땜하느냐 고민했습니다.

향후 어떤 보드 위에 설치하게 될 것이냐를 상상하여, 그 보드가 평평할 듯 하여 곧은 pin 을 납땜하였습니다.





4. Pinout

Breakout 보드에는 8개의 pinout이 있지만, 실제로 사용되는 것은 5개, 또는 6개만 사용됩니다.


    GY-521   | Arduino Nano
----------------------------
     VCC     |     3.3V
     GND     |     GND
     SCL     |     A5
     SDA     |     A4
     AD0     |     GND
     INT     |     D2
----------------------------


GY-521 pinout 에 대한 몇가지 지식을 적어 봅니다.

- 원래 3.3V 가 구동 voltage 이지만, GY-521 은 자체 레귤레이터가 있어서 5V 도 가능합니다.

- Arduino 에는 2개의 MPU-6050 을 연결할 수 있게 되어 있고, AD0 의 high/low voltage 로 구분합니다.

- SCL 은 I2C 의 clock 담당이고, SDA 는 data 를 담당합니다.


관련된 내용을 영문 페이지들에서 가져와 봤습니다.


The MPU-6050 can have address of 0x68 or 0x69, depending on if the AD0 pin is held high or low.

Without anything connected, it was at 0x68 for me.


AD0 can be used to control the I2C-address. If it is connected to ground then the address is 0x68 and if it is connected to VLOGIC then the address is 0x69. The data sheet for the chip states that VLOGIC ranges from 1.71V to the working voltage of the chip. To find out the address the I2C scanner sketch can be uploaded to the Arduino when it is connected to the GY-521. The result can be viewed through the serial monitor. For the GY-521 the I2C device is found at address 0x68. This means that ADO must be connected to a pull down resistor. This holds the signal at 0V.


The gyro module communicates with the Arduino through I2C serial communication via the serial clock (SCL) and data (SDA). The MPU6050 chip needs 3.3V but a voltage regulator on the GY-521 board allows you to give it up to 5V.


Layout 은 다음과 같습니다.



실제 연결한 사진입니다.






5. I2C

Arduino 와의 인터페이스가 I2C 입니다.

우선 잘 인식 되는지 확인해 보도록 합니다.


Arduino IDE 의 Library Manager 에서 "i2cdetect" 를 인스톨 하여 돌려봅니다.



소스는 간단합니다.


#include "Wire.h"
#include "i2cdetect.h"

void setup() {
	Wire.begin();
	Serial.begin(9600);
	Serial.println("i2cdetect example\n");
	Serial.print("Scanning address range 0x03-0x77\n\n");
}

void loop() {
	i2cdetect(); // default range from 0x03 to 0x77
	delay(2000);
}

결과는 다음과 같이 잘 나옵니다.

잘 인식 되었네요.



다만 MPU6050 전용 sketch 를 돌리기 위해서는 "I2Cdev.h" 가 IDE 에 등록이 되어야 합니다.

필요한 파일은 아래 링크에서 다운로드 받을 수 있습니다.


https://github.com/jrowberg/i2cdevlib



다운로드 받은 zip 파일 내부를 보면 "I2Cdev" 라는 폴더가 있습니다.

이 "I2Cdev" 폴더를 IDE 의 library 폴더 하위에 copy 하면 library 등록이 됩니다.


- I2Cdev path : i2cdevlib-master > Arduino > I2Cdev

- library path : Arduino > library


아래는 다운로드 받은 zip 파일의 path 입니다.



아래는 Arduino 의 library path 입니다.



이제 I2C 준비는 완료 되었습니다.




5. MPU-6050 sketch

이제 MPU-6050 을 구동해 볼 차례 입니다.


위에서 다운로드 받았던 zip 파일인 "i2cdevlib-master.zip" 에서 다음 path 에서 찾아보면,

"MPU6050" 이라는 폴더가 있습니다.


- I2Cdev path : i2cdevlib-master > Arduino > MPU6050


이 폴더를 I2Cdev 와 동일한 library 폴더에 옮겨 놓으면 sketch example 을 사용할 수 있게 됩니다.

 


소스는 다음과 같습니다.


// I2C device class (I2Cdev) demonstration Arduino sketch for MPU6050 class using DMP (MotionApps v2.0)
// 6/21/2012 by Jeff Rowberg 
// Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
//
// Changelog:
//      2013-05-08 - added seamless Fastwire support
//                 - added note about gyro calibration
//      2012-06-21 - added note about Arduino 1.0.1 + Leonardo compatibility error
//      2012-06-20 - improved FIFO overflow handling and simplified read process
//      2012-06-19 - completely rearranged DMP initialization code and simplification
//      2012-06-13 - pull gyro and accel data from FIFO packet instead of reading directly
//      2012-06-09 - fix broken FIFO read sequence and change interrupt detection to RISING
//      2012-06-05 - add gravity-compensated initial reference frame acceleration output
//                 - add 3D math helper file to DMP6 example sketch
//                 - add Euler output and Yaw/Pitch/Roll output formats
//      2012-06-04 - remove accel offset clearing for better results (thanks Sungon Lee)
//      2012-06-01 - fixed gyro sensitivity to be 2000 deg/sec instead of 250
//      2012-05-30 - basic DMP initialization working

/* ============================================
I2Cdev device library code is placed under the MIT license
Copyright (c) 2012 Jeff Rowberg

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
===============================================
*/

// I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h files
// for both classes must be in the include path of your project
#include "I2Cdev.h"

#include "MPU6050_6Axis_MotionApps20.h"
//#include "MPU6050.h" // not necessary if using MotionApps include file

// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation
// is used in I2Cdev.h
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
    #include "Wire.h"
#endif

// class default I2C address is 0x68
// specific I2C addresses may be passed as a parameter here
// AD0 low = 0x68 (default for SparkFun breakout and InvenSense evaluation board)
// AD0 high = 0x69
MPU6050 mpu;
//MPU6050 mpu(0x69); // <-- use for AD0 high

/* =========================================================================
   NOTE: In addition to connection 3.3v, GND, SDA, and SCL, this sketch
   depends on the MPU-6050's INT pin being connected to the Arduino's
   external interrupt #0 pin. On the Arduino Uno and Mega 2560, this is
   digital I/O pin 2.
 * ========================================================================= */

/* =========================================================================
   NOTE: Arduino v1.0.1 with the Leonardo board generates a compile error
   when using Serial.write(buf, len). The Teapot output uses this method.
   The solution requires a modification to the Arduino USBAPI.h file, which
   is fortunately simple, but annoying. This will be fixed in the next IDE
   release. For more info, see these links:

   http://arduino.cc/forum/index.php/topic,109987.0.html
   http://code.google.com/p/arduino/issues/detail?id=958
 * ========================================================================= */



// uncomment "OUTPUT_READABLE_QUATERNION" if you want to see the actual
// quaternion components in a [w, x, y, z] format (not best for parsing
// on a remote host such as Processing or something though)
//#define OUTPUT_READABLE_QUATERNION

// uncomment "OUTPUT_READABLE_EULER" if you want to see Euler angles
// (in degrees) calculated from the quaternions coming from the FIFO.
// Note that Euler angles suffer from gimbal lock (for more info, see
// http://en.wikipedia.org/wiki/Gimbal_lock)
//#define OUTPUT_READABLE_EULER

// uncomment "OUTPUT_READABLE_YAWPITCHROLL" if you want to see the yaw/
// pitch/roll angles (in degrees) calculated from the quaternions coming
// from the FIFO. Note this also requires gravity vector calculations.
// Also note that yaw/pitch/roll angles suffer from gimbal lock (for
// more info, see: http://en.wikipedia.org/wiki/Gimbal_lock)
#define OUTPUT_READABLE_YAWPITCHROLL

// uncomment "OUTPUT_READABLE_REALACCEL" if you want to see acceleration
// components with gravity removed. This acceleration reference frame is
// not compensated for orientation, so +X is always +X according to the
// sensor, just without the effects of gravity. If you want acceleration
// compensated for orientation, us OUTPUT_READABLE_WORLDACCEL instead.
//#define OUTPUT_READABLE_REALACCEL

// uncomment "OUTPUT_READABLE_WORLDACCEL" if you want to see acceleration
// components with gravity removed and adjusted for the world frame of
// reference (yaw is relative to initial orientation, since no magnetometer
// is present in this case). Could be quite handy in some cases.
//#define OUTPUT_READABLE_WORLDACCEL

// uncomment "OUTPUT_TEAPOT" if you want output that matches the
// format used for the InvenSense teapot demo
//#define OUTPUT_TEAPOT



#define INTERRUPT_PIN 2  // use pin 2 on Arduino Uno & most boards
#define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6)
bool blinkState = false;

// MPU control/status vars
bool dmpReady = false;  // set true if DMP init was successful
uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU
uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize;    // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount;     // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars
Quaternion q;           // [w, x, y, z]         quaternion container
VectorInt16 aa;         // [x, y, z]            accel sensor measurements
VectorInt16 aaReal;     // [x, y, z]            gravity-free accel sensor measurements
VectorInt16 aaWorld;    // [x, y, z]            world-frame accel sensor measurements
VectorFloat gravity;    // [x, y, z]            gravity vector
float euler[3];         // [psi, theta, phi]    Euler angle container
float ypr[3];           // [yaw, pitch, roll]   yaw/pitch/roll container and gravity vector

// packet structure for InvenSense teapot demo
uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' };



// ================================================================
// ===               INTERRUPT DETECTION ROUTINE                ===
// ================================================================

volatile bool mpuInterrupt = false;     // indicates whether MPU interrupt pin has gone high
void dmpDataReady() {
    mpuInterrupt = true;
}



// ================================================================
// ===                      INITIAL SETUP                       ===
// ================================================================

void setup() {
    // join I2C bus (I2Cdev library doesn't do this automatically)
    #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
        Wire.begin();
        Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties
    #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
        Fastwire::setup(400, true);
    #endif

    // initialize serial communication
    // (115200 chosen because it is required for Teapot Demo output, but it's
    // really up to you depending on your project)
    Serial.begin(115200);
    while (!Serial); // wait for Leonardo enumeration, others continue immediately

    // NOTE: 8MHz or slower host processors, like the Teensy @ 3.3v or Ardunio
    // Pro Mini running at 3.3v, cannot handle this baud rate reliably due to
    // the baud timing being too misaligned with processor ticks. You must use
    // 38400 or slower in these cases, or use some kind of external separate
    // crystal solution for the UART timer.

    // initialize device
    Serial.println(F("Initializing I2C devices..."));
    mpu.initialize();
    pinMode(INTERRUPT_PIN, INPUT);

    // verify connection
    Serial.println(F("Testing device connections..."));
    Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));

    // wait for ready
    Serial.println(F("\nSend any character to begin DMP programming and demo: "));
    while (Serial.available() && Serial.read()); // empty buffer
    while (!Serial.available());                 // wait for data
    while (Serial.available() && Serial.read()); // empty buffer again

    // load and configure the DMP
    Serial.println(F("Initializing DMP..."));
    devStatus = mpu.dmpInitialize();

    // supply your own gyro offsets here, scaled for min sensitivity
    mpu.setXGyroOffset(220);
    mpu.setYGyroOffset(76);
    mpu.setZGyroOffset(-85);
    mpu.setZAccelOffset(1788); // 1688 factory default for my test chip

    // make sure it worked (returns 0 if so)
    if (devStatus == 0) {
        // turn on the DMP, now that it's ready
        Serial.println(F("Enabling DMP..."));
        mpu.setDMPEnabled(true);

        // enable Arduino interrupt detection
        Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
        attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), dmpDataReady, RISING);
        mpuIntStatus = mpu.getIntStatus();

        // set our DMP Ready flag so the main loop() function knows it's okay to use it
        Serial.println(F("DMP ready! Waiting for first interrupt..."));
        dmpReady = true;

        // get expected DMP packet size for later comparison
        packetSize = mpu.dmpGetFIFOPacketSize();
    } else {
        // ERROR!
        // 1 = initial memory load failed
        // 2 = DMP configuration updates failed
        // (if it's going to break, usually the code will be 1)
        Serial.print(F("DMP Initialization failed (code "));
        Serial.print(devStatus);
        Serial.println(F(")"));
    }

    // configure LED for output
    pinMode(LED_PIN, OUTPUT);
}



// ================================================================
// ===                    MAIN PROGRAM LOOP                     ===
// ================================================================

void loop() {
    // if programming failed, don't try to do anything
    if (!dmpReady) return;

    // wait for MPU interrupt or extra packet(s) available
    while (!mpuInterrupt && fifoCount < packetSize) {
        // other program behavior stuff here
        // .
        // .
        // .
        // if you are really paranoid you can frequently test in between other
        // stuff to see if mpuInterrupt is true, and if so, "break;" from the
        // while() loop to immediately process the MPU data
        // .
        // .
        // .
    }

    // reset interrupt flag and get INT_STATUS byte
    mpuInterrupt = false;
    mpuIntStatus = mpu.getIntStatus();

    // get current FIFO count
    fifoCount = mpu.getFIFOCount();

    // check for overflow (this should never happen unless our code is too inefficient)
    if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
        // reset so we can continue cleanly
        mpu.resetFIFO();
        Serial.println(F("FIFO overflow!"));

    // otherwise, check for DMP data ready interrupt (this should happen frequently)
    } else if (mpuIntStatus & 0x02) {
        // wait for correct available data length, should be a VERY short wait
        while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();

        // read a packet from FIFO
        mpu.getFIFOBytes(fifoBuffer, packetSize);
        
        // track FIFO count here in case there is > 1 packet available
        // (this lets us immediately read more without waiting for an interrupt)
        fifoCount -= packetSize;

        #ifdef OUTPUT_READABLE_QUATERNION
            // display quaternion values in easy matrix form: w x y z
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            Serial.print("quat\t");
            Serial.print(q.w);
            Serial.print("\t");
            Serial.print(q.x);
            Serial.print("\t");
            Serial.print(q.y);
            Serial.print("\t");
            Serial.println(q.z);
        #endif

        #ifdef OUTPUT_READABLE_EULER
            // display Euler angles in degrees
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetEuler(euler, &q);
            Serial.print("euler\t");
            Serial.print(euler[0] * 180/M_PI);
            Serial.print("\t");
            Serial.print(euler[1] * 180/M_PI);
            Serial.print("\t");
            Serial.println(euler[2] * 180/M_PI);
        #endif

        #ifdef OUTPUT_READABLE_YAWPITCHROLL
            // display Euler angles in degrees
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
            Serial.print("ypr\t");
            Serial.print(ypr[0] * 180/M_PI);
            Serial.print("\t");
            Serial.print(ypr[1] * 180/M_PI);
            Serial.print("\t");
            Serial.println(ypr[2] * 180/M_PI);
        #endif

        #ifdef OUTPUT_READABLE_REALACCEL
            // display real acceleration, adjusted to remove gravity
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetAccel(&aa, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
            Serial.print("areal\t");
            Serial.print(aaReal.x);
            Serial.print("\t");
            Serial.print(aaReal.y);
            Serial.print("\t");
            Serial.println(aaReal.z);
        #endif

        #ifdef OUTPUT_READABLE_WORLDACCEL
            // display initial world-frame acceleration, adjusted to remove gravity
            // and rotated based on known orientation from quaternion
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetAccel(&aa, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
            mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
            Serial.print("aworld\t");
            Serial.print(aaWorld.x);
            Serial.print("\t");
            Serial.print(aaWorld.y);
            Serial.print("\t");
            Serial.println(aaWorld.z);
        #endif
    
        #ifdef OUTPUT_TEAPOT
            // display quaternion values in InvenSense Teapot demo format:
            teapotPacket[2] = fifoBuffer[0];
            teapotPacket[3] = fifoBuffer[1];
            teapotPacket[4] = fifoBuffer[4];
            teapotPacket[5] = fifoBuffer[5];
            teapotPacket[6] = fifoBuffer[8];
            teapotPacket[7] = fifoBuffer[9];
            teapotPacket[8] = fifoBuffer[12];
            teapotPacket[9] = fifoBuffer[13];
            Serial.write(teapotPacket, 14);
            teapotPacket[11]++; // packetCount, loops at 0xFF on purpose
        #endif

        // blink LED to indicate activity
        blinkState = !blinkState;
        digitalWrite(LED_PIN, blinkState);
    }
}


Arduino 에 업로드 하여 확인해 봅니다.

Arduino IDE > Tools > Serial Monitor 를 열어서 확인해 봅니다.


Initializing 이 끝나고 준비상태가 되면, 어떤 character 든 보내면 측정이 시작됩니다.



Gyroscope 의 위치값들이 실시간으로 순식간에 측정이 되기 시작합니다.



잘 되네요.




6. Processing

3D 모델링을 통하여 Gyroscope 의 위치가 어떻게 보여지는지를 해봅니다.


다만, 우선 먼저 업로드 했던 sketch 를 조금 바꾸어서 업로드 해 놓을 필요가 있습니다.


- 코멘트 아웃 : #define OUTPUT_READABLE_YAWPITCHROLL

- 코멘트 제거 : #define OUTPUT_TEAPOT


이제 3D 가시화 하기 위해 "Processing IDE" 라는 프로그램을 다운로드 받고 인스톨 합니다.


https://processing.org/download/?processing



사용하는 OS 에 맞는 파일을 다운로드 받고 인스톨 합니다.



이제 Arduino MPU 6050 processing example 을 실행에 필요한 "Toxi" library 를 다운로드 받습니다.


https://bitbucket.org/postspectacular/toxiclibs/downloads/


지금 올라와 있는 최신 버전은 "toxiclibs-complete-0020.zip" 입니다.

다운로드 받으면 processing 폴더의 libraries 안에 copy 합니다.


- Program Files > processing > modes > java > libraries



아래는 copy 완료된 후의 libraries 폴더의 모습.



이제 processing 을 실행시킨 후, Arduino IDE libraries 폴더에 있는 MPU6050 example 에 있는 processing 용 파일을 엽니다.


- Arduino > libraries > MPU6050 > examples > MPU6050_DMP6 > Processing > MPUTeapot > MPUTeapot.pde



이것을 실행하기 전에 마지막으로 port 를 수정합니다.

저는 "COM6" 에 arduino 가 연결되어 있으므로 다음과 같이 수정하였습니다.


- String portName = "COM6";


Linux 의 경우는 "String portName = Serial.list()[0];" 을 활성화 하거나,

"String portName = /dev/ttyUSB0" 등과 같이 직접 기술해 주면 됩니다.



이제 준비는 완료 되었습니다.




7. 3D 결과

Processing 프로그램의 플레이 버튼인 "run" 을 실행시키면 다음 동영상 같이 비행체를 통하여 확인할 수 있습니다.



오오오오오!!! 정말 되었어!

동영상으로 찍어 봤습니다.



신기한 센서를 이용하여 가시화 하니 재미 있네요.




8. 3D object 변경해 보기

못생긴 비행기 모양은 112 ~ 139 라인에서 구현해 놨습니다.

이 모양을 바꾸고 싶으면 이 부분을 수정하면 됩니다.


수정하는 내용은 아래 URL 을 참고하면 되겠습니다.


https://processing.org/tutorials/p3d/


translate(width/2, height/2, 0);
stroke(255);
rotateX(PI/2);
rotateZ(-PI/6);
noFill();

beginShape();
vertex(-100, -100, -100);
vertex( 100, -100, -100);
vertex(   0,    0,  100);

vertex( 100, -100, -100);
vertex( 100,  100, -100);
vertex(   0,    0,  100);

vertex( 100, 100, -100);
vertex(-100, 100, -100);
vertex(   0,   0,  100);

vertex(-100,  100, -100);
vertex(-100, -100, -100);
vertex(   0,    0,  100);
endShape();


적용하면 다음과 같이 변경됩니다. :-)






FIN

주말에 GY-521 센서 가지고 잘 놀았습니다.

향후 드론을 만들게 되면 사용하게 될까요?

And