'GPIO'에 해당되는 글 7건

  1. 2020.08.14 Hardware | ZE08-CH2O Formaldehyde 센서 사용해보기 4
  2. 2020.06.23 Hardware | Raspberry Pi 4 Model B 4GB 버전 구매기
  3. 2020.06.23 Hardware | Raspberry Pi 4 알루미늄 케이스 구매기
  4. 2020.04.21 Hardware | ESP32 NTP Server 이용한 시간 맞추기
  5. 2020.04.18 Hardware | ESP32 Deep sleep 알아보기
  6. 2020.04.16 Hardware | ESP32 Cryptographic HW 가속 확인해 보기 2
  7. 2020.04.11 Hardware | EPS32 PWM 기능 확인해 보기

Hardware | ZE08-CH2O Formaldehyde 센서 사용해보기

|

1. 환경 호르몬


사람은 호르몬으로 살아간다고 해도 과언이 아닙니다.

컨디션, 감정, 치유, 성장, 성향, 행동 등, 인간의 몸안에서 일어나는 거의 모든 화학작용과 관련이 되어 있으며, 몸을 컨트롤 합니다.


다만 아쉽게도, 현대 사회로 진입하면서 생활은 편해졌지만, 화학 물질 등으로 인하여 몸 안의 호르몬들이 교란을 잃으키고 있습니다.

더 무서운 것은 이 "환경 호르몬" 은 거의 모든 곳에 도사리고 있다는 것이지오.

특히 환경 호르몬 중에서는 "포름알데히드" 가 그 주범 물질 중 하나 입니다.


* Formaldehyde

https://en.wikipedia.org/wiki/Formaldehyde



* 포름알데하이드

https://namu.wiki/w/%ED%8F%AC%EB%A6%84%EC%95%8C%EB%8D%B0%ED%95%98%EC%9D%B4%EB%93%9C


메탄올을 잘못 마셨을 때, 실명이나 사망을 일으키는 것도 이 포름알데히드 때문이다. 메탄올이 신체 내부로 유입되면 간에서 포름알데히드 및 포름산이라는 물질로 변환되는데, 특히 포름알데히드는 시신경을 손상시키고 단백질 조직을 변성시켜 굳혀버리는 효과를 갖고 있기 때문에 이런 위험한 상황이 발생하게 되는 것이다.


가구, 특히 MDF를 사용한 가구에서는 본드와 페인트에 의해 포름알데히드가 공기 중으로 방출된다. 소위 새집증후군, 아토피의 원인으로 지목되고 있으며, 새 가구를 샀을 때 매캐한 냄새, 눈이나 목의 따가움을 느꼈다면 이것 때문이다. 포름알데히드는 성인은 물론 특히 어린이에게 매우 유해하기 때문에 실내가구의 방출량은 각국에서 규제하고 있다. 다만 포름알데히드 측정에 대한 국제 표준이 없기 때문에 국가별로 측정방법 및 규정이 다른 상태다.


다이X 같은 곳에 가면, 온갖 화학물질이 공기 중에 떠다니는 것을 대번에 느낄 수 있습니다. 이게 환경호르몬 = 포름알데히드 입니다.


값싸게 제품을 만들다 보니, 출처가 불분명한 재료와, 후처리 되지 않은 채로 공장에서 나와 유통되기 때문이죠.

특히 중국산 물건에서 많이 느낄 수 있습니다. 손이 쥐여지는 것을 입으로 쉽게 가져가는 애기들을 생각하면 소름 돋는 장소라고 생각합니다.




2. 포름알데히드 센서


그럼, 포름알데히드를 측정할 수 있는 센서는 없을까, 하고 찾아 봤습니다. 있네요.

구매를 작년 9월쯤 했을 때에는 위의 가격이었는데, 요즘은 조금 저렴해 졌습니다.


* Formaldehyde sensor ZE08-CH2O serial output formaldehyde concentration measurement with cable

https://ko.aliexpress.com/item/32842350486.html



이 센서에 사용된 "ZE08-CH2O" 는 그리 널리 사용되지 않지만, 아두이노 센서 breakout 보드를 생산하는 DFRobot - Gravity 회사에서도 출시 했을 만큼 완전 무명도 아닙니다. (이 글의 후반부에서 그림과 함께 조금 설명 해놨습니다.)


* ZE08-CH2O formaldehyde gas sensor module

https://www.winsen-sensor.com/sensors/ch2o-gas-sensor/ze08-ch2o.html

ZE08-CH2O_V1.0.pdf




3. 도착


도착샷은 예의 입니다.



센서는 PCB 보드 윗쪽에 얹혀져 있습니다.



Breakout 보드 밑부분은 센서값 처리를 위한 회로 및 IC chip 들로 빼빽하게 차 있습니다.

센서 종류로 14 USD 나 하는, 비싼 값을 하는 이유가 있네요.





4. Specification


메인 chip 에 붙어 있는 IC20 이라는 스티커를 제거하면, chip 명칭을 알 수 있습니다.



사진으로는 흐릿하게 나와서, 제품 설명 그림을 가져와 봤습니다.

STMicroelectronics 사의 32-bit ARM Cortex-M 프로세서라는 것을 알 수 있습니다.


stm32f030f4.pdf



STM32F030F4 네요. 아래 장표를 보면 32-bit ARM Cortex-M 에서 Mainstream 에 해당하는 chip 입니다.



동일 계열의 칩 중에서는 USB 인터페이스가 생략되어 있고, 메모리가 가장 적은 버전이군요.



ZE08-CH2O 의 인터페이스는 다음과 같습니다.



인터페이스 선들을 살펴 보면, 신호를 받는 방식이 PWM, UART, 그리고 DAC 세 가지 임을 알 수 있습니다.

아래는 default 연결인 Active Upload type 방식이라고 하는데, 기본적으로 TX/RX 를 사용하는 UART 방식을 표시합니다.





5. Arduino 용 Active Upload 소스


Default 방식인 Active Upload (UART) 소스 입니다.


* Serial Communication CH2O sensor
    - https://forum.arduino.cc/index.php?topic=547952.0


Sketch 는 다음과 같습니다.


#include "arduino.h"
#include "SoftwareSerial.h"

#define MAXLENGTH 9
#define VREF 5.0 // voltage on AREF pin

long tenMinutes = 10 * 60 * 1000L; // on time of heater
SoftwareSerial mySerial(10, 11);

byte receivedCommandStack[MAXLENGTH];
byte checkSum(byte array[], byte length);
boolean receivedFlag;

void setup() {
	// put your setup code here, to run once
	mySerial.begin(9600);
	Serial.begin(115200);
}

void loop() {
	ze08_PPM();
}

byte checkSum(byte array[], byte length) {
	byte sum = 0;
	for (int i = 1; i < length - 1; i ++) {
		sum += array[i];
	}
	sum = (~sum) + 1;
	return sum;
}

boolean available1() { //new data was recevied
	while (mySerial.available()) {
		for (byte index = 0; index < MAXLENGTH - 1; index++) {
			receivedCommandStack[index] = receivedCommandStack[index + 1];
		}
		receivedCommandStack[MAXLENGTH - 1] = mySerial.read();
		
		byte sumNum = checkSum(receivedCommandStack, MAXLENGTH);
		if ( (receivedCommandStack[0] == 0xFF) && (receivedCommandStack[1] == 0x17) && (receivedCommandStack[2] == 0x04) && (receivedCommandStack[MAXLENGTH - 1] == sumNum) ) { //head bit and sum are all right
			receivedFlag = 1; //new data received
			return receivedFlag;
		} else {
			receivedFlag = 0; //data loss or error
			return receivedFlag;
		}
	}
	return receivedFlag;
}

float ze08_PPM() {
	if (available1() == 1) {
		receivedFlag = 0;
		
		float ppb = (unsigned int) (receivedCommandStack[4] * 256) + receivedCommandStack[5]; // bit 4: ppm high 8-bit; bit 5: ppm low 8-bit
		float ppm = ppb / 1000; // 1ppb = 1000ppm
		delay (1000);
		Serial.print("Formalin ppm == ");
		Serial.println(ppm);
		return ppm;
	}
}

float analogReadPPM() {
	float analogVoltage = analogRead(A0) / 1024.0 * VREF;
	float ppm = 3.125 * analogVoltage - 1.25; //linear relationship (0.4V for 0 ppm and 2V for 5ppm)
	
	if( ppm < 0 ) {
		ppm = 0;
	} else if( ppm > 5 ) {
		ppm = 5;
	}
	delay (1000);
	return ppm;
}


Arduino 와의 Pin 연결은 다음과 같습니다.


 ZE08-CH2O | Arduino Nano
--------------------------
   6 (TX)  |      D10
   5 (RX)  |      D11
--------------------------
           |     POWER
--------------------------
    VCC    |      3.3V
    GND    |      GND
--------------------------


회로 diagram 도 그려 봤습니다.


실재로 연결할 선들은 CO2 센서인 MH-Z14A 와 갯수와 크기가 동일하여, 만들어 놨던 선을 사용 했습니다.


* Hardware | CO2 센서인 MH-Z14A 를 활용해 보자

https://chocoball.tistory.com/entry/Hardware-CO2-sensor-MH-Z14A


사용하지 않는 선들은 빵판 고정용으로 사용. :-)



아래와 같이 값이 표시됩니다. Calibration 이 적용되지 않아서, 이 값이 정확한 것인지는 모르겠습니다.

센서 주변 공기가 바뀌면, 그에 따라서 센서값도 달라집니다.





6. DFRobot 용 소스 - DAC


UARTDAC 를 스위치 하나로 변경하면서 사용할 수 있는 breakout 보드를 DFRobot 에서 출시한 제품도 있습니다.


* Gravity: Formaldehyde (HCHO) Sensor
    - https://www.dfrobot.com/product-1574.html



깔끔하게 잘 만들었네요. 저는 비싸서 구입하지 않았습니다.



Breakout 보드도 Pin 별로 이미 구분되어 있어서, 조금 아는 사람이면 굳이 DFRobot 제품을 구매할 필요는 없을 듯 하다.


DFRobot / DFRobotHCHOSensor - A library for DFRobot Gravity HCHO Sensor, Arduino Compatible.

https://github.com/DFRobot/DFRobotHCHOSensor

DFRobotHCHOSensor.zip


* Gravity HCHO WiKi
    - https://wiki.dfrobot.com/Gravity__HCHO_Sensor_SKU__SEN0231


DFRobot 도 동일한 센서를 사용했으므로, DAC 소스를 가져다 사용해 봅시다.


/***************************************************
 DFRobot Gravity: HCHO Sensor
 "https://www.dfrobot.com/wiki/index.php/Gravity:_HCHO_Sensor_SKU:_SEN0231"

 ***************************************************
 This example reads the concentration of HCHO in air by DAC mode.

 Created 2016-12-15
 By Jason "jason.ling@dfrobot.com@dfrobot.com"

 GNU Lesser General Public License.
 See "http://www.gnu.org/licenses/" for details.
 All above must be included in any redistribution
 ****************************************************/

 /***********Notice and Trouble shooting***************
 1. This code is tested on Arduino Uno with Arduino IDE 1.0.5 r2.
 2. In order to protect the sensor, do not touch the white sensor film on the sensor module,
 and high concentration of Hydrogen sulfide, hydrogen, methanol, ethanol, carbon monoxide should be avoided.
 3. Please do not use the modules in systems which related to human being’s safety.
 ****************************************************/

#define SensorAnalogPin A2 // this pin read the analog voltage from the HCHO sensor
#define VREF 5.0 // voltage on AREF pin

void setup() {
	Serial.begin(115200);
}

void loop() {
	Serial.print(analogReadPPM());
	Serial.println("ppm");
	delay(1000);
}

float analogReadPPM() {
	float analogVoltage = analogRead(SensorAnalogPin) / 1024.0 * VREF;
	float ppm = 3.125 * analogVoltage - 1.25;    //linear relationship(0.4V for 0 ppm and 2V for 5ppm)
	
	if( ppm < 0) {
		ppm = 0;
	} else if( ppm > 5) {
		ppm = 5;
	}
	return ppm;
}


Arduino 와 연결되는 Pin 정보는 다음과 같습니다.


 ZE08-CH2O | Arduino Nano
--------------------------
  2 (DAC)  |      A2
--------------------------
           |     POWER
--------------------------
    VCC    |      3.3V
    GND    |      GND
--------------------------


Layout 구성도 입니다.



실재로 구현한 사진 :-)



Default 연결 방식인 Active Upload 방식과는 값의 차이가 많이 날 뿐더러, 일관적인 값을 보여주지 않습니다.





7. DFRobot 용 소스 - UART


이번에는 DFRobot 에서 나온 UART 방식의 소스를 이용해 봅니다.


/***************************************************
 DFRobot Gravity: HCHO Sensor
 "https://www.dfrobot.com/wiki/index.php/Gravity:_HCHO_Sensor_SKU:_SEN0231"

 ***************************************************
 This example reads the concentration of HCHO in air by UART mode.

 Created 2016-12-15
 By Jason "jason.ling@dfrobot.com@dfrobot.com"

 GNU Lesser General Public License.
 See "http://www.gnu.org/licenses/" for details.
 All above must be included in any redistribution
 ****************************************************/

 /***********Notice and Trouble shooting***************
 1. This code is tested on Arduino Uno with Arduino IDE 1.0.5 r2.
 2. In order to protect the sensor, do not touch the white sensor film on the sensor module,
 and high concentration of Hydrogen sulfide, hydrogen, methanol, ethanol, carbon monoxide should be avoided.
 3. Please do not use the modules in systems which related to human being’s safety.
 ****************************************************/

#include "DFRobotHCHOSensor.h"
#include "SoftwareSerial.h"

#define SensorSerialPin 10 // this pin read the uart signal from the HCHO sensor

SoftwareSerial sensorSerial(SensorSerialPin, SensorSerialPin);
DFRobotHCHOSensor hchoSensor(&sensorSerial);

void setup() {
	sensorSerial.begin(9600); // the baudrate of HCHO is 9600
	sensorSerial.listen();
	Serial.begin(115200);
}

void loop() {
	if(hchoSensor.available() > 0) {
		Serial.print(hchoSensor.uartReadPPM());
		Serial.println("ppm");
	}
}


Arduino 와의 Pin 연결은 다음과 같습니다.


 ZE08-CH2O | Arduino Nano
--------------------------
   6 (TX)  |      D10
--------------------------
           |     POWER
--------------------------
    VCC    |      3.3V
    GND    |      GND
--------------------------


Layout 그림도 그려 봤습니다.



실재 구성 모습 입니다.



처음 시도한 UART 소스의 결과값과 거의 동일하게 나옵니다.
DFRobot 라이브러리에서 거의 모든 처리가 이루어 지지만, 처음 시도한 UART 방식과 동일한 듯 합니다.




8. ESP8266 용 소스


인터넷 바다를 떠돌다가, ESP8266 을 이용한 소스를 발견하게 됩니다.


* rsalinas/ze08-ch2o-arduino

https://github.com/rsalinas/ze08-ch2o-arduino


Remember that this sensor requires 5V in Vcc but does NOT tolerate 5V in its RX input. If you just want to use the default, active mode, you don't even need to connect this pin, so you can connect directly 5V, GND and Arduino's RX.


ZE08-CH2O.zip


궁극적으로는 WiFi > internet 을 통하여 sensor data 를 올리고, 모니터링 방식이 좋으므로, 잘 되었습니다.

ESP8266 에서 돌아가는 소스라면, WiFi 연결 코드만 추가하면 추가로 arduino 필요 없이 바로 구현이 가능 하겠습니다.


지금까지는, arduino 와 sensor 를 연결하고, ESP8266 은 오로지 WiFi 용으로만 사용하는 구성이었습니다.

ESP8266 에서 sensor 값 감지와 WiFi 가 동시에 되면, arduino 를 사용할 필요가 없어 효율이 좋겠네요.


ZIP 파일을 그대로 Library 에 추가 합니다.


Sketch > Include Library



Libraries 폴더에 보면, 새롭게 올라가 있는 것을 확인할 수 있습니다.



소스를 보면 Basic 하나만 등록되어 있습니다.


File > Examples > ze08-ch2o > Basic



Sketch 는 다음과 같습니다. SoftwareSerial 에서 조금 손을 봤습니다.


#include "ze08_ch2o.h"
#include "SoftwareSerial.h"

// Instantiate a serial port, whatever Stream you have
// SoftwareSerial ch2oSerial(4, SW_SERIAL_UNUSED_PIN); // RX, TX
SoftwareSerial ch2oSerial(14, 14); // RX, TX

// Instantiate a sensor connected to the previous port
Ze08CH2O ch2o{&ch2oSerial};

void setup() {
	ch2oSerial.begin(9600);
	ch2oSerial.listen();
	Serial.begin(115200); // Serial Monitor
}

void loop() {
	Ze08CH2O::concentration_t reading;
	
	if (ch2o.read(reading)) {
		Serial.print("New value: ");
		Serial.println(reading);
	}
}


여기서 한가지 문제가 있습니다.

ESP8266 에는 RX pin 이 하나만 있어, Serial Monitor 를 이용하면서 "수신" 을 받을 수 있는 pin 이 없다는 것이죠.

즉, sensor 를 연결할 수 있는 Pin 이 없습니다.



남아있는 GPIO2 는 TX 용도이고, 부팅 후에는 HIGH 로, 3V 전압이 걸려 있습니다.

그럼 도대체 이 소스 제작자는 어떻게 확인한 것일 까요?


사실은 ESP2866 이라는 것은 ESP-01 만 뜻하는 것이 아니라, ESP8266EX 을 사용한 WiFi module 의 총칭이었던 것입니다.

저는 지금까지 ESP8266 = ESP-01 인줄 알고, SoftwareSerial 부분에서 더 이상 진행을 못하고 있었습니다.



위의 도식처럼 ESP8266EX 에는, 더 많은 GPIO 를 지원하고 있었습니다.

단순히, ESP-01 의 pin out 갯수가 적었던 것이였죠. 더 많은 연결을 위해 ESP-01 도 pin out 을 처음부터 늘려 줬으면 어떠했을까 합니다.

어떤 사람이 "it's a shame to have such a small number of GPIOs at ESP-01" 라고 쓴 글을 본것 같습니다.


저도 chip diagram 을 보고, 납땜을 시도 했습니다.... 만 실패 했습니다. 너무 조밀합니다.



굴하지 않고, ESP8266EX chip 을 사용하면서 Pinout 이 확장된 breakout 모델인 ESP-03 을 구입해서 연결 했습니다!

연결할 수 있는 Pinout - GPIO 가 많아서 행복합니다.



Pin 연결도는 다음과 같습니다.


 ZE08-CH2O |  ESP-03
----------------------
   6 (TX)  | GPIO 14
----------------------
           |  POWER
----------------------
    VCC    |   3.3V
    GND    |   GND
----------------------


실재 구성도는 다음과 같습니다.



Serial Monitor 까지 연결한 모습이 다음과 같습니다. ESP-03 의 GPIO 14 에 ZE08-CH2O 의 TX 와 연결되어 있습니다.




기본 소스에 IoT 솔루션인 Blynk 소스를 입혀 봤습니다. 자세한 내용은 아래 포스트에 올려 놨습니다.


* Software | Blynk 사용해 보기

https://chocoball.tistory.com/entry/Software-Blynk-howto


이렇게 하므로써, WiFi 연결까지 소스에 한방에 녹여 놓을 수 있습니다.


#include "ze08_ch2o.h"
#include "SoftwareSerial.h"
 
SoftwareSerial ch2oSerial(14, 14); // RX, TX
Ze08CH2O ch2o{&ch2oSerial};
 
int sensorData;
 
/* Comment this out to disable prints and save space */
#define BLYNK_PRINT Serial
 
#include "ESP8266WiFi.h"
#include "BlynkSimpleEsp8266.h"
 
// You should get Auth Token in the Blynk App.
// Go to the Project Settings (nut icon).
char auth[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 
// Your WiFi credentials.
// Set password to "" for open networks.
char ssid[] = "XXXXXXXXXXXX";
char pass[] = "YYYYYYYYYYYYYYYYYYY";
 
BlynkTimer timer;
 
// This function sends Arduino's up time every second to Virtual Pin (5).
// In the app, Widget's reading frequency should be set to PUSH. This means
// that you define how often to send data to Blynk App.
void myTimerEvent() {
    // You can send any value at any time.
    // Please don't send more that 10 values per second.
     
    Ze08CH2O::concentration_t reading;
    if (ch2o.read(reading)) {
        Serial.print("ZE08-CH2O : ");
        Serial.println(reading);
         
        sensorData = reading;
    }
    Blynk.virtualWrite(V5, sensorData);
}
 
void setup() {
    // Debug console
    Serial.begin(115200);
     
    ch2oSerial.begin(9600);
    ch2oSerial.listen();
     
    Blynk.begin(auth, ssid, pass);
    // You can also specify server:
    //Blynk.begin(auth, ssid, pass, "blynk-cloud.com", 80);
    //Blynk.begin(auth, ssid, pass, IPAddress(192,168,1,100), 8080);
     
    // Setup a function to be called every second
    timer.setInterval(5000L, myTimerEvent);
}
 
void loop() {
    Blynk.run();
    timer.run(); // Initiates BlynkTimer
}


아래와 같이 값들이 표시됩니다.

값의 범위가 50 ~ 150 정도여서, 기준을 모르겠어나, 값의 변동이 기민하게 발생하는 것을 보니, 문제 없을 듯 합니다.

나누기 100 을 하면, UART 방식의 값과 거의 비슷해 집니다.



문제 없이 Blynk 어플에서 값들을 확인할 수 있습니다.





FIN


ZE08-CH2O 의 연결 방식인 DAC / UART 는 시험해 봤으나, PWM 은 정보가 없어서 시도해 보지 못했네요.

나중에 알게 되면 추가하도록 하겠습니다.


Formaldehyde 센서 확인도 끝났으니, 자 다음 센서요~.


And

Hardware | Raspberry Pi 4 Model B 4GB 버전 구매기

|

드. 디. 어. Raspberry Pi 4B 4GB 를 구매했습니다.




1. 구입


중고사이트에서 조금 저렴하게 구입.





2. unboxing


언박싱은 항상 행복합니다.



최신 Raspberry Pi 임을 말해주고 있습니다. 메모리가 4GB !!! 1GB 로 허덕이던 예전 버전에서 무려 4배.



학습용이 4GB 까지 왔군요. 그것도 비용 변동 없이. 기술의 발전과 mass production 이란...



살폿이.



이전 버전 이후 2년만인가... 이 조그마한 손바닥에 PC 급이 올라가는 군요.





3. 외관


여러가지 조그마한 component 가 늘었습니다.



GPIO 쪽 옆면.



전원쪽 옆면. USB-C, micro HDMI 포트가 보입니다.





4. CPU


CPU code 는 다음과 같습니다.


* Raspberry Pi revision codes

https://www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/README.md



Raspberry Pi OS 에서 command 를 치면 아래와 같이 표시되네요.


cat /sys/firmware/devicetree/base/model | sed G

cat /proc/device-tree/model | sed G

dmesg | grep model

cat /proc/cpuinfo




Revision : c03112 표기가 말해주듯, Rev 1.2 이며, 4GB 버전이 확인 됩니다.

인터넷에서 검색한 specification 은 다음과 같습니다. 드디어 쿼드 코어가 올라가는 군요.

위의 명령어에서는 BCM2835 라고 표시되어 나오지만, 이는 OS 어플의 문제로 BCM2711 이 맞습니다.


Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz


"pinout" 이라는 command 로도 확인 가능합니다. 이 명령어는 GPIO 정도까지 자세히 보여줍니다.





5. Memory


이번 Raspberry Pi 4 를 구입한 가장 큰 이유는 memory 크기 입니다.

그 전버전까지는 1GB memory 만 실장되어 있어서 Web Server / MediaWiKi 를 돌리기에는 역부족이었습니다. (돌아가긴 돌아 감)


메모리가 4GB 까지 늘었으니, 쾌적한 MediaWiki 구동이 되길 기대하고 있어요. 그럼 확인해 봐야겠죠?

외형상 memory chip 모델명 상, 다음과 같이 4GB 임이 확인 되었습니다. 제가 구입한 것은 D9WHV (4GB 버전) 네요.


- 4GB : D9WHV (M - micron logo)

- 2GB : D9WHZ (M - micron logo)

- 1GB : 4HBMGCJ (+ QR code)



아래와 같이 코멘드로도 확인할 수 있습니다.


vcgencmd get_mem arm

free -h

dmesg | grep Memory






6. Rev 1.2


발매 초기 버전은 eMark 의 USB-C 케이블 사용시, 전원 인가가 거부되는 문제가 있었습니다.

이는 “E-marked” USB-C 케이블을 HIFI 오디오 케이블로 인식하여 USB-C 전원을 사용할 수 없었으나, 2020년 초에 수정되어 나온 Rev 1.2 버전에서는 USB-C PD 호환성을 개선하여 범용 USB-C 어뎁터를 이용한 충전도 가능해 졌다고 합니다. 자세한 이야기는 충전 어뎁터에서 다루겠습니다.


초기 버전과 Rev 1.2 의 구별은 다음 사진의 오른쪽 부분의 트랜지스터 위치라고 합니다. Rev 1.1 은 micro SD 소켓 옆에 위치합니다.



이미 Raspberry Pi OS 상의 command 로는 CPU 확인하면서 확인 되었습니다.


참고로 한국 발매용에는 KC 인증 마크가 프린팅 되어 있으며, KC 인증 타각 위치는 위의 사진의 오른쪽 윗부분 입니다.

인증 번호는 "R-C-P2R-RPI4B" 네요.




7. 충전 어뎁터


USB-C 타입의 전원을 사용하며, 5V / 3A 라는 꽤 높은 사양의 전원 어뎁터가 필요합니다.

USB PDQuick Charge 등의 사양이 얽혀 있습니다만, 최종적으로 Raspberry Pi 4 에서 사용하려면 아래 세 가지를 만족하는 것을 구입하는게 좋다는 결론이 도출됩니다.


----------------------------------------------------------

- 이왕이면 USB-C PD 2.0 을 만족하는 어뎁터가 best 

- 5V / 3A 충족

- USB-C to USB-C 케이블 사용

----------------------------------------------------------


* HP 65W USB-C 슬림 여행용 전원 어댑터 구입기

https://chocoball.tistory.com/entry/HP-65W-USBC-slim-travel-power-adapter-buy



위의 충전 어뎁터 구입.




8. 케이스


쿨링과 보호용 케이스 목적을 동시에 만족하는 통짜 알루미늄 케이스를 구입했습니다.

Raspberry Pi 4B 본체 가격보다 더 비싸... ㅠㅠ


* Hardware | Raspberry Pi 4 알루미늄 케이스 구매기

https://chocoball.tistory.com/entry/Hardware-Raspberry-Pi-4-aluminum-case-buy





9. Raspberry Pi OS 굽기


micro SD 에 OS 이미지를 굽는 새로운 어플이 Raspberry Pi 진영에서 공개되었습니다.


* Raspberry Pi Imager for Windows

https://www.raspberrypi.org/downloads/


설치할 OS 를 선택하면 다운로드부터 micro SD 에 굽는것 까지 한번에 다 해 줍니다.


64 bit 은 아직 beta 판이라, 리스트에 뜨지는 않네요.



뭐가 있는지 모르니, Raspberry Pi OS Full 버전으로 인스톨 합니다.



대상 micro SD 를 선택.



Write 를 클릭하면, 다운로드 > 굽기 > verifying 까지 모두 한번에 실행해 줍니다.



다운로드부터 시작하므로, 완료까지는 시간이 꽤 걸립니다.



한 40분 정도는 걸린 듯.





10. Raspberry Pi Desktop


OS 가 입혀진 micro SD 를 꼽고 부팅하면, 모든 것이 자동으로 실행됩니다. 예전에 모두 메뉴얼로 실행할 때와 비교하면 격세지감.



micro SD 카드의 크기에 맞추어 자동으로 disk space 확장도 해 줍니다. 이 역시 예전에는 메뉴얼로 하던 작업.



모든 설정이 끝나면 리부팅 하여, 바로 사용 가능한 상태로 됩니다. Raspberry Pi 4B 가 최신이라 그런지, 전혀 딜레이 없이 구동됩니다.



마지막으로 SSH 를 활성화 하면, Desktop 이 아니더라도 SSH 를 이용한 headless 로 사용 가능합니다.


Raspberry Pi Configuration > Interfaces > SSH > Enable





11. 8GB RAM !!!


확인되지 않은 소문만 있었는데, 결국 올 5월에 8GB 버전이 출시 되었습니다. (야이, $%&^*@#!@#&*#%@*!^&@#)


* 8GB Raspberry Pi 4 on sale now at $75



일단 가지고 있는 4GB 버전으로 이것 저것 돌려보고, 8GB 버전으로 기변할 지 고민좀 해보겠습니다.

여기까지 오는데 찐이 빠져 일단 서랍 속으로...



And

Hardware | Raspberry Pi 4 알루미늄 케이스 구매기

|

Raspberry Pi 4 가 작년 말쯔음 새로 출시되었습니다.

초반에는 물건을 구할 수 없어서 참고 있다가, 이번 전직하면서 기분 전환할 겸, 중고로 조금 저렴하게 구하게 되었습니다.


* Hardware | Raspberry Pi 4 Model B 4GB 버전 구매기

https://chocoball.tistory.com/entry/Hardware-Raspberry-Pi-4-4GB-buy


이번 버전은 가장 성능 좋은 CPU 를 가졌지만, 그 만큼 전력도 많이 먹는지라 발열이 심합니다.

쾌적한 쿨링을 위해, 항상 구매하던 Wicked Aluminum (가족 비지니스라고 하더군요) 에서 통짜 알루미늄 케이스를 구입 했습니다.




1. Raspberry Pi 4 케이스


Raspberry Pi 1 과 2 를 구입했을 때 부터 아래 사이트에서 판매하는 통 알루미늄 케이스를 구입해서 사용해 왔습니다.

CPU / RAM 등에 케이스가 직접 접촉하여, 캐이스 전체가 열을 발산해 주는 방식 입니다.


케이스 바디가 자체가 heat-sink 가 되는 방식이라 팬이 추가로 필요 없고 passive heat-sink 역할을 해 줍니다.

이 만큼 완성도 있고, 멋있는 라즈베리파이용 케이스는 못 봤습니다.


* Wicked Aluminum

https://wickedaluminum.com/




두근두근.




2. Open Shield 대응용 버전


지금까지는 라즈베리 파이를 전부 감싸는 형태를 구입했지만, 이번에는 GPIO 및 카메라 슬롯이 노출된 버전을 구입해 보기로 합니다.


* Raspberry Pi 4 OPEN SHIELD Case with Heat Dissipation

https://wickedaluminum.com/collections/frontpage/products/raspberry-pi-4-open-shield-case-with-heat-dissipation



Raspberry Pi 용 Shield 를 구입해도 상판을 분리하거나 케이블을 이용해서 연장할 필요 없이 바로 장착할 수 있게 만들어 졌습니다.

디자인의 혁신이 계속 이루어 지고 있는, 이 회사를 저는 지지합니다.



상판이 Shield 장착을 위해 반으로 잘려 기존의 통구리 부피가 반으로 줄었지만, 온도 방어가 어느정도 되는지 궁금해 지네요.




3. 내 돈...

본체 가격이 70 USD, 배송비 25 USD 여서 거의 100 달러가 필요합니다. 10만원 이상... ㅠㅠ

가족이 경영하는 family business 라서 그런지 가격에 자비가 없습니다. 아니 본체보다 더 비싸.



그 간 internet performance 리소스를 제공하여 모아 두었던 돈을 이번에 사용하기로 합니다. (지금은 없어진 서비스)


* Software | Gomez Peer 의 서비스 종료

https://chocoball.tistory.com/entry/Software-Gomez-Peer-retirement


* Linux | Gomez Peer arbeit

https://chocoball.tistory.com/entry/Linux-Gomez-Peer-install


이번에도 returning 고객이 됩니다. 벌어 놓은 것은 몇 년치 이지만, 한방에 없어지는 군요.



고민따위 할 순간도 없이, 순식간에 결제가 완료되고, 배송을 기다리게 됩니다.





4. 도착

USPS 를 통해 배달되어 왔습니다.

배송 현황이 일본에서 출발한게 언제인데 인천까지 도착하는게 10일 넘게 걸리고, tracking 정보는 꼬여 있습니다.

이놈들 DB 정렬 작업도 안하는 듯. 인터넷에 보니, USPS 원성은 자자 하더군요. 주문한지 1달만에 도착했습니다.


웃긴건 이게 무려 "First-Class Package International Service" 라는 것. 지금 확인해 보니, 아직도 도착하지 않는 것으로 뜨네요.



포장은 무난.



그냥 통 알루미늄 덩어리 이다 보니, 간단하게 포장되어 왔습니다.



구성품이 레핑으로 쌓여져 왔습니다. 중간의 신문지는 배송 중 스크래치 방지용.



이번에 구입한 버전은 GPIO 를 노출시켜야 하므로, 상판 두께가 반으로 줄었습니다.





5. 내용물

제품의 메인인 케이스 덩어리들 입니다. RPi 4B Standard Bottom / RPi 4B Open Shield Top 이라고 각인이 새겨져 있네요.



하판은 기존 제품과 크게 달라진 점은 없어 보입니다.



완전 클리어 광을 내도 될 듯 한데, 궂이 그러지 않고 러프한 표면을 유지하겠다는 바닥면.



상판.



GPU, RAM, CPU 를 접촉하는 부분이 튀어 나와 있습니다.



그 외, 시리콘 그리스, 나사, 완충 쿠션, 절연 플라스틱, 전열 테이프, 클리어 다리, 등이 포함되어 있습니다. 





6. 일반 방열판 쿨링 효과

쿨링 효과를 비교하기 위해, 아래와 같은 순으로 온도를 측정해 봤습니다.

- CPU 에 방열판 붙이지 않고 측정

- 낮은 구리 방열판

- 높은 구리 방열판

- Wicked Aluminum case


Raspberry Pi OS 의 명령어는 다음과 같습니다.


$ vcgencmd measure_temp


우선 CPU 에 방열판을 붙이지 않은 채로 노출시켜서 측정해 봤습니다.



집에서 굴러다니던 통구리 방열판을 붙여 봤습니다.



바로 53도에서 47도로, 6도가 떨어지는 군요.



통구리 방열판 중, 높이가 있으면서 바람 흐름이 좋게 설계된 좀더 고급 방열판을 붙여 봅니다.



초반에는 낮아지는 듯 했으나, 결국 방열판이 없는 상태와 비슷한 온도로 되돌아 옵니다.

이는, 온도를 받아주는 mass 가 동일하게 달구어 지므로, 별도의 쿨링팬이 없는 상황에서는 비슷한 결과가 나올 듯 합니다.

다만, 방열판이 없을 때 보다 2~3도 정도는 낮습니다.





7. Wicked Aluminum case 효과

두둥~! Wicked Aluminum 케이스를 장착합니다.



GPU, RAM, CPU 가 맞닿을 위치에 써멀 구리스를 발라 주구요.



뚜껑을 한번 닫았다가 분리하여, 써멀 구리스의 도포 정도를 확인해 봅니다. 한방에 완벽하군요!



나사를 조여주면 장착 완료.



효과는 대단. 그냥 34도 찍습니다. 53도 > 34도면 거의 20도 차이가 나는군요. 실내 온도는 24도 정도였습니다.



SSH 로 접속하여 부하를 주고 연석으로 확인해 봤습니다. 40도는 잘 안넘어가네요.





8. 여러가지 확인

Raspberry Pi 의 CPU 는 얼마가 적정 온도일까요?


* What is the maximum / minimum operational temperature?

https://raspberrypi.stackexchange.com/questions/103/what-is-the-maximum-minimum-operational-temperature


The Raspberry Pi is built from commercial chips which are qualified to different temperature ranges; the LAN9512 is specified by the manufacturers being qualified from 0°C to 70°C, while the AP is qualified from -40°C to 85°C.


70도 이하군요. 50도 정도까지는 특별히 문제 없을 듯 합니다.

gnuplot 이라는 graph 분석툴을 가지고 시계열 그래프를 그려주는 어플을 활용하는 방법이 나와 있어서 사용해 봅니다.

# gnuplot install
sudo apt install gnuplot


구동할 스크립트는 다음과 같습니다.

#!/bin/sh
echo $(date +%s ; cat /sys/class/thermal/thermal_zone0/temp) | tee >> temperature.plot


위의 스크립트를 저장했으면, 구동할 수 있도록 파일 속성을 변경하고 watch 를 돌립니다.


# linux command
chmod +x temperature.sh
nohup watch ./temperature.sh &


output 된 결과를 가지고 그래프를 그려보면 아래와 같이 보여줍니다. (What a brilliant !!!)

gnuplot -e "set terminal dumb $(tput cols) $(tput lines);plot 'temperature.plot' using 0:2 with lines"


구동되는 스크립트를 중지하려면 killall 로 종료.


killall watch


너무 이쁘다... ㅠㅠ 마지막 부분이 꺾인 것은, 선풍기 바람을 10초 정도 쏘여 봤습니다.

대략 40도 근처에서 쿨링팬 없이 Raspberry Pi 4 4GB 를 운용 가능합니다.



매우 비싼 통알루미늄 케이스지만, 만족도는 최고네요.



FIN




Update - 202020712


송장 종이를 기록을 위해 올려 놓습니다.



And

Hardware | ESP32 NTP Server 이용한 시간 맞추기

|

지금까지 ESP32 에 관한 글은 아래를 참고해 주세요.


* Hardware | ESP32 Deep sleep 알아보기
    - https://chocoball.tistory.com/entry/Hardware-ESP32-Deep-sleep

* Hardware | ESP32 Cryptographic HW 가속 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-ESP32-Cryptographic-HW-acceleration

* Hardware | EPS32 PWM 기능 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-EPS32-PWM

* Hardware | ESP32 의 internal sensor 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-ESP32-internal-sensors

* Hardware | ESP32 의 Dual core 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-ESP32-Dual-core

* Hardware | ESP32 스펙 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-ESP32-spec-check

* Hardware | ESP32 간단 사용기
    - https://chocoball.tistory.com/entry/Hardware-simple-review-ESP32


이 글을 마지막으로 ESP32 에 대해 대략적인 내용은 얼추 확인해 본 것 같습니다.

이후에는 WiFi 이용한 활용시에는 가능한 ESP32 를 사용해 보려 합니다.




1. NTP


본 포스트는 아래 글을 참조 하였습니다.


* Getting Date & Time From NTP Server With ESP32

- https://lastminuteengineers.com/esp32-ntp-server-date-time-tutorial/



NTP 서버란 인터넷에서 시간을 동기화 시켜주는 서버를 말합니다.
인증, GPS 위치와 연관된 시간 정보, 동기화와 관련된 timestamp 등, 인터넷 서비스의 거의 모든 기능들이 동일한 "시간" 정보가 필요합니다.


동일한 시간 기준으로 동작해야 하는 서비스를 위해, 인터넷에서는 NTP 라는 서비스가 지원되고 있습니다.


* Network Time Protocol

- https://en.wikipedia.org/wiki/Network_Time_Protocol


이를태면, 정확한 시간 정보를 가져올 수 있는 서버들이 존재한다는 것이죠.




2. WiFi



"인터넷" 을 통해 시간 정보를 가져와야 하므로, WiFi 등의 인터넷 연결이 필수 입니다.

ESP32 는, WiFi 연결을 위해 "WiFi.h" 라이브러리를 지원합니다. 이를 통해 쉽게 WiFi 연결을 실현해 줍니다.

지금까지 Arduino + ESP8266 에서는 AT command 를 이용하여, 하나하나 명령어를 정의해야 했었는데, 그럴 수고를 덜어줍니다.


const char* ssid       = "YOUR_SSID";
const char* password   = "YOUR_PASS";


인터넷 접속을 위한 WiFI SSID 및 비번 정의를 하면 끝 입니다. 정말로 이걸로 끝입니다.




3. NTP


NTP 서버를 통해 시간을 가져오는 소스는 다음과 같습니다.


#include "WiFi.h"
#include "time.h"

const char* ssid       = "YOUR_SSID";
const char* password   = "YOUR_PASS";

const char* ntpServer = "pool.ntp.org";
const long  gmtOffset_sec = 3600;
const int   daylightOffset_sec = 3600;

void printLocalTime() {
	struct tm timeinfo;
	if(!getLocalTime(&timeinfo)) {
		Serial.println("Failed to obtain time");
		return;
	}
	Serial.println(&timeinfo, "%A, %B %d %Y %H:%M:%S");
}

void setup() {
	Serial.begin(115200);
	
	// connect to WiFi
	Serial.printf("Connecting to %s ", ssid);
	WiFi.begin(ssid, password);
	while (WiFi.status() != WL_CONNECTED) {
		delay(500);
		Serial.print(".");
	}
	Serial.println(" CONNECTED");
	
	// init and get the time
	configTime(gmtOffset_sec, daylightOffset_sec, ntpServer);
	printLocalTime();
	
	// disconnect WiFi as it's no longer needed
	WiFi.disconnect(true);
	WiFi.mode(WIFI_OFF);
}

void loop() {
	delay(1000);
	printLocalTime();
}


위의 소스를 각 로컬 상황에 맞게 설정해줘야 합니다.


const char* ntpServer = "pool.ntp.org";
const long  gmtOffset_sec = 3600;
const int   daylightOffset_sec = 3600;


우선, NTP 서버는 "pool.ntp.org" 로 정의 합니다. 이 FQDN 을 통해 NTP 서버를 할당 받습니다.


"gmOffset_sec" 는 GMT 기준으로 얼마나 차이나는지를 확인합니다.

한국은 그리니치 천문대 기준 9시간 추가된 시간대인, "GMT+9" 이므로 "3600 * 9 = 32400" 만큼 더해주면 됩니다.


또한, "daylightOffset_sec" 은, 서머타임 적용 지역이면, 한시간인 3600 을 적용하면 됩니다.

우리나라는 서머타임 적용은 80년대에 일시적으로 적용하고, 그 이후 사용되지 않으므로 "0" 으로 정의합니다. (옛날 사람...)


위의 내용을 적용하고 실행하면 다음과 같이 됩니다.



한국 상황에 맞게, 요일까지 정확히 표시할 수 있는 것을 확인했습니다.



FIN

ESP32 의 WiFi 구현이 얼마나 간단한지를 확인해 보기 위해 NTP 서비스를 활용해 봤습니다.
앞으로는 ESP32 를 통하여 다양한 project 를 해봐야 겠네요.

끝.


And

Hardware | ESP32 Deep sleep 알아보기

|

ESP32 는 WiFi 및 Bluetooth 에 추가하여 Dual-core CPU 에 sensor 등, 작은 사이즈에 많은 기능을 내포하고 있습니다.

본격적인 IoT 생활을 위해 Arduino 보드에서 ESP32 로 넘어가는 중이라 ESP32 에 대해 공부하고 있습니다.


지금까지 작성된 ESP32 에 관한 글들은 아래 포스트들을 참고해 주세요.


* Hardware | ESP32 Cryptographic HW 가속 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-ESP32-Cryptographic-HW-acceleration

* Hardware | EPS32 PWM 기능 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-EPS32-PWM

* Hardware | ESP32 의 internal sensor 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-ESP32-internal-sensors

* Hardware | ESP32 의 Dual core 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-ESP32-Dual-core

* Hardware | ESP32 스펙 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-ESP32-spec-check

* Hardware | ESP32 간단 사용기
    - https://chocoball.tistory.com/entry/Hardware-simple-review-ESP32



1. Power Modes


ESP32 는 사용 전력량을 알맞게 활용할 수 있도록 5가지 Power 모드를 제공하고 있습니다. Off-Grid 에서의 활용에서는 필수겠죠.



아래 테이블은, 각 mode 들에 따른 ESP32 부위별 active / inactive 와 사용 전력 정보 입니다.


* Insight Into ESP32 Sleep Modes & Their Power Consumption
    - https://lastminuteengineers.com/esp32-sleep-modes-power-consumption/


--------------------------------------------------------------------------------
| Power Mode  | Active                 | Inactive               | Power        |
|             |                        |                        | Consumption  |
|------------------------------------------------------------------------------|
| Active      | WiFi, Bluetooth, Radio |                        | 160 ~ 260 mA |
|             | ESP32 Core             |                        |              |
|             | ULP Co-processor       |                        |              |
|             | Peripherals, RTC       |                        |              |
|------------------------------------------------------------------------------|
| Modem Sleep | ESP32 Core             | WiFi, Bluetooth, Radio |   3 ~ 20 mA  |
|             | ULP Co-processor, RTC  | Peripherals            |              |
|------------------------------------------------------------------------------|
| Light Sleep | ULP Co-processor, RTC  | WiFi, Bluetooth, Radio |     0.8 mA   |
|             | ESP32 Core (Paused)    | Peripherals            |              |
|------------------------------------------------------------------------------|
| Deep Sleep  | ULP Co-processor, RTC  | WiFi, Bluetooth, Radio |     10 uA    |
|             |                        | ESP32 Core, Peripherals|              |
|------------------------------------------------------------------------------|
| Hibernation | RTC                    | ESP32 Core             |     2.5 uA   |
|             |                        | ULP Co-processor       |              |
|             |                        | WiFi, Bluetooth, Radio |              |
|             |                        | Peripherals            |              |
--------------------------------------------------------------------------------


사용하지 않는 부분을 죽이고 최대한 사용 전력을 아끼는 방법입니다.

사양서에는, 좀더 자세한 power mode 별 소비 전력이 안내되어 있습니다.



이번 포스트에서 집중적으로 확인해 볼 Deep sleep 에서는 CPU 를 사용하지 않고, 소전력으로 돌아가는 ULP processor 를 활용합니다.



참고고, ESP32 에서 사용되는 전력의 많은 부분은 역시 WiFi/Bluetooth 이군요.





2. RTC_IO / Touch


Deep sleep 시에 ESP32 를 깨우거나 입력을 받아들이는 pin 은 RTC_IO / Touch 핀들 입니다.

즉, 이 pin 들을 통하여 ULP co-processor 에 자극을 줘서 deep sleep 에서 깨어날 수 있도록 open 된 핀들이라고 할 수 있겠네요.

참고로 모든 Touch 핀들은 RTC_IO 핀들에 포함되어 있습니다.





3. 깨우기 - timer


마침 Examples 에 정갈하게 소스가 올라와 있으니, 이걸 이용해서 확인해 봅니다.

File > Examples > ESP32 > DeepSleep > TimerWakeup


원본 소스는 다음과 같습니다. 5초마다 깼다가 바로 잠드는 시퀀스로 짜여져 있습니다.

wakeup_reason 을 통해, timer 외에 touch 나 external pin 에 의한 확인도 가능하게 만들어져 있네요.


/*
Simple Deep Sleep with Timer Wake Up
=====================================
ESP32 offers a deep sleep mode for effective power
saving as power is an important factor for IoT
applications. In this mode CPUs, most of the RAM,
and all the digital peripherals which are clocked
from APB_CLK are powered off. The only parts of
the chip which can still be powered on are:
RTC controller, RTC peripherals ,and RTC memories

This code displays the most basic deep sleep with
a timer to wake it up and how to store data in
RTC memory to use it over reboots

This code is under Public Domain License.

Author:
Pranav Cherukupalli - cherukupallip@gmail.com
*/

#define uS_TO_S_FACTOR 1000000ULL  /* Conversion factor for micro seconds to seconds */
#define TIME_TO_SLEEP  5        /* Time ESP32 will go to sleep (in seconds) */

RTC_DATA_ATTR int bootCount = 0;

/*
Method to print the reason by which ESP32
has been awaken from sleep
*/
void print_wakeup_reason(){
  esp_sleep_wakeup_cause_t wakeup_reason;

  wakeup_reason = esp_sleep_get_wakeup_cause();

  switch(wakeup_reason)
  {
    case ESP_SLEEP_WAKEUP_EXT0 : Serial.println("Wakeup caused by external signal using RTC_IO"); break;
    case ESP_SLEEP_WAKEUP_EXT1 : Serial.println("Wakeup caused by external signal using RTC_CNTL"); break;
    case ESP_SLEEP_WAKEUP_TIMER : Serial.println("Wakeup caused by timer"); break;
    case ESP_SLEEP_WAKEUP_TOUCHPAD : Serial.println("Wakeup caused by touchpad"); break;
    case ESP_SLEEP_WAKEUP_ULP : Serial.println("Wakeup caused by ULP program"); break;
    default : Serial.printf("Wakeup was not caused by deep sleep: %d\n",wakeup_reason); break;
  }
}

void setup(){
  Serial.begin(115200);
  delay(1000); //Take some time to open up the Serial Monitor

  //Increment boot number and print it every reboot
  ++bootCount;
  Serial.println("Boot number: " + String(bootCount));

  //Print the wakeup reason for ESP32
  print_wakeup_reason();

  /*
  First we configure the wake up source
  We set our ESP32 to wake up every 5 seconds
  */
  esp_sleep_enable_timer_wakeup(TIME_TO_SLEEP * uS_TO_S_FACTOR);
  Serial.println("Setup ESP32 to sleep for every " + String(TIME_TO_SLEEP) +
  " Seconds");

  /*
  Next we decide what all peripherals to shut down/keep on
  By default, ESP32 will automatically power down the peripherals
  not needed by the wakeup source, but if you want to be a poweruser
  this is for you. Read in detail at the API docs
  http://esp-idf.readthedocs.io/en/latest/api-reference/system/deep_sleep.html
  Left the line commented as an example of how to configure peripherals.
  The line below turns off all RTC peripherals in deep sleep.
  */
  //esp_deep_sleep_pd_config(ESP_PD_DOMAIN_RTC_PERIPH, ESP_PD_OPTION_OFF);
  //Serial.println("Configured all RTC Peripherals to be powered down in sleep");

  /*
  Now that we have setup a wake cause and if needed setup the
  peripherals state in deep sleep, we can now start going to
  deep sleep.
  In the case that no wake up sources were provided but deep
  sleep was started, it will sleep forever unless hardware
  reset occurs.
  */
  Serial.println("Going to sleep now");
  Serial.flush(); 
  esp_deep_sleep_start();
  Serial.println("This will never be printed");
}

void loop(){
  //This is not going to be called
}


Serial Monitor 를 통해, 5초마다 깨어나는 상황을 확인 할 수 있습니다.





4. 깨우기 - touch pin


터치센서를 통하여 잠에서 깨우는 소스 입니다. 이것도 마찬가지로 기본 제공되는 Example 을 이용하여 확인해 봤습니다.


File > Examples > ESP32 > DeepSleep > TouchWakeup

/*
Deep Sleep with Touch Wake Up
=====================================
This code displays how to use deep sleep with
a touch as a wake up source and how to store data in
RTC memory to use it over reboots

This code is under Public Domain License.

Author:
Pranav Cherukupalli - cherukupallip@gmail.com
*/

#define Threshold 40 /* Greater the value, more the sensitivity */

RTC_DATA_ATTR int bootCount = 0;
touch_pad_t touchPin;
/*
Method to print the reason by which ESP32
has been awaken from sleep
*/
void print_wakeup_reason(){
  esp_sleep_wakeup_cause_t wakeup_reason;

  wakeup_reason = esp_sleep_get_wakeup_cause();

  switch(wakeup_reason)
  {
    case ESP_SLEEP_WAKEUP_EXT0 : Serial.println("Wakeup caused by external signal using RTC_IO"); break;
    case ESP_SLEEP_WAKEUP_EXT1 : Serial.println("Wakeup caused by external signal using RTC_CNTL"); break;
    case ESP_SLEEP_WAKEUP_TIMER : Serial.println("Wakeup caused by timer"); break;
    case ESP_SLEEP_WAKEUP_TOUCHPAD : Serial.println("Wakeup caused by touchpad"); break;
    case ESP_SLEEP_WAKEUP_ULP : Serial.println("Wakeup caused by ULP program"); break;
    default : Serial.printf("Wakeup was not caused by deep sleep: %d\n",wakeup_reason); break;
  }
}

/*
Method to print the touchpad by which ESP32
has been awaken from sleep
*/
void print_wakeup_touchpad(){
  touchPin = esp_sleep_get_touchpad_wakeup_status();

  switch(touchPin)
  {
    case 0  : Serial.println("Touch detected on GPIO 4"); break;
    case 1  : Serial.println("Touch detected on GPIO 0"); break;
    case 2  : Serial.println("Touch detected on GPIO 2"); break;
    case 3  : Serial.println("Touch detected on GPIO 15"); break;
    case 4  : Serial.println("Touch detected on GPIO 13"); break;
    case 5  : Serial.println("Touch detected on GPIO 12"); break;
    case 6  : Serial.println("Touch detected on GPIO 14"); break;
    case 7  : Serial.println("Touch detected on GPIO 27"); break;
    case 8  : Serial.println("Touch detected on GPIO 33"); break;
    case 9  : Serial.println("Touch detected on GPIO 32"); break;
    default : Serial.println("Wakeup not by touchpad"); break;
  }
}

void callback(){
  //placeholder callback function
}

void setup(){
  Serial.begin(115200);
  delay(1000); //Take some time to open up the Serial Monitor

  //Increment boot number and print it every reboot
  ++bootCount;
  Serial.println("Boot number: " + String(bootCount));

  //Print the wakeup reason for ESP32 and touchpad too
  print_wakeup_reason();
  print_wakeup_touchpad();

  //Setup interrupt on Touch Pad 3 (GPIO15)
  touchAttachInterrupt(T3, callback, Threshold);

  //Configure Touchpad as wakeup source
  esp_sleep_enable_touchpad_wakeup();

  //Go to sleep now
  Serial.println("Going to sleep now");
  esp_deep_sleep_start();
  Serial.println("This will never be printed");
}

void loop(){
  //This will never be reached
}


GPIO15 번을 손으로 터치하면 깨어납니다.



Serial Monitor 에서도 touch pin 에서의 감지를 알려 줍니다.





5. 깨우기 - EXT(0) external wake ups


Pin 의 HIGH/LOW 입력을 통하여 깨우는 방법 입니다.


File > Examples > ESP32 > DeepSleep > ExternalWakeup


/*
Deep Sleep with External Wake Up
=====================================
This code displays how to use deep sleep with
an external trigger as a wake up source and how
to store data in RTC memory to use it over reboots

This code is under Public Domain License.

Hardware Connections
======================
Push Button to GPIO 33 pulled down with a 10K Ohm
resistor

NOTE:
======
Only RTC IO can be used as a source for external wake
source. They are pins: 0,2,4,12-15,25-27,32-39.

Author:
Pranav Cherukupalli -cherukupallip@gmail.com
*/

//#define BUTTON_PIN_BITMASK 0x200000000 // 2^33 in hex
#define BUTTON_PIN_BITMASK 0x16 // 2^4 in hex

RTC_DATA_ATTR int bootCount = 0;

/*
Method to print the reason by which ESP32
has been awaken from sleep
*/
void print_wakeup_reason(){
  esp_sleep_wakeup_cause_t wakeup_reason;

  wakeup_reason = esp_sleep_get_wakeup_cause();

  switch(wakeup_reason)
  {
    case ESP_SLEEP_WAKEUP_EXT0 : Serial.println("Wakeup caused by external signal using RTC_IO"); break;
    case ESP_SLEEP_WAKEUP_EXT1 : Serial.println("Wakeup caused by external signal using RTC_CNTL"); break;
    case ESP_SLEEP_WAKEUP_TIMER : Serial.println("Wakeup caused by timer"); break;
    case ESP_SLEEP_WAKEUP_TOUCHPAD : Serial.println("Wakeup caused by touchpad"); break;
    case ESP_SLEEP_WAKEUP_ULP : Serial.println("Wakeup caused by ULP program"); break;
    default : Serial.printf("Wakeup was not caused by deep sleep: %d\n",wakeup_reason); break;
  }
}

void setup(){
  Serial.begin(115200);
  delay(1000); //Take some time to open up the Serial Monitor

  //Increment boot number and print it every reboot
  ++bootCount;
  Serial.println("Boot number: " + String(bootCount));

  //Print the wakeup reason for ESP32
  print_wakeup_reason();

  /*
  First we configure the wake up source
  We set our ESP32 to wake up for an external trigger.
  There are two types for ESP32, ext0 and ext1 .
  ext0 uses RTC_IO to wakeup thus requires RTC peripherals
  to be on while ext1 uses RTC Controller so doesnt need
  peripherals to be powered on.
  Note that using internal pullups/pulldowns also requires
  RTC peripherals to be turned on.
  */
//  esp_sleep_enable_ext0_wakeup(GPIO_NUM_33,1); //1 = High, 0 = Low
  esp_sleep_enable_ext0_wakeup(GPIO_NUM_4,1); //1 = High, 0 = Low

  //If you were to use ext1, you would use it like
  //esp_sleep_enable_ext1_wakeup(BUTTON_PIN_BITMASK,ESP_EXT1_WAKEUP_ANY_HIGH);

  //Go to sleep now
  Serial.println("Going to sleep now");
  esp_deep_sleep_start();
  Serial.println("This will never be printed");
}

void loop(){
  //This is not going to be called
}


원본 소스는 GPIO_33 번을 활용하게 되어 있으나, 핀 배열상 GPIO_4 로 바꾸도록 수정 해 봤습니다.

Linux 의 파일 시스템에서, 쓰기/읽기 정의에 사용되는 bit mask 방법을 사용하는 군요.


2^(pin 번호) 를 16진수로 표현하여 정의합니다. GPIO_4 이므로, 우선 2 의 4승 계산은 다음과 같습니다.


2^4 = 16



위의 결과를 16진수로 변경해야 합니다. 아래 사이트의 converter 를 이용하면 편합니다.


* Decimal to Hexadecimal converter
    - https://www.rapidtables.com/convert/number/decimal-to-hex.html



최종적으로 2^4 = 16 > 10 (Hexadecimal) 가 됩니다.


...

//#define BUTTON_PIN_BITMASK 0x200000000 // 2^33 in hex
#define BUTTON_PIN_BITMASK 0x10 // 2^4 in hex

...

//  esp_sleep_enable_ext0_wakeup(GPIO_NUM_33,1); //1 = High, 0 = Low
  esp_sleep_enable_ext0_wakeup(GPIO_NUM_4,1); //1 = High, 0 = Low

...


BITMASK 값과 ext0GPIO_NUM_4 로 바꾸어 주면 정의가 완료 됩니다.
회로를 아래처럼 꾸며, 스위치를 누르면 깨어나는 방법입니다.


실제 사진은 다음과 같습니다.



정상 작동 되는군요.





6. 깨우기 - EXT(1) external wake ups


외부 입력을 통한 방법은 위의 EXT(0) 와 같으나, 이번에는 두 개의 스위치를 이용하는 방법 입니다.


/*
Deep Sleep with External Wake Up
=====================================
This code displays how to use deep sleep with
an external trigger as a wake up source and how
to store data in RTC memory to use it over reboots
 
This code is under Public Domain License.
 
Hardware Connections
======================
Push Button to GPIO 33 pulled down with a 10K Ohm
resistor
 
NOTE:
======
Only RTC IO can be used as a source for external wake
source. They are pins: 0,2,4,12-15,25-27,32-39.
 
Author:
Pranav Cherukupalli - cherukupallip@gmail.com
*/
 
#define BUTTON_PIN_BITMASK 0x8004 // GPIOs 2 and 15
 
RTC_DATA_ATTR int bootCount = 0;
 
/*
Method to print the reason by which ESP32
has been awaken from sleep
*/
void print_wakeup_reason(){
  esp_sleep_wakeup_cause_t wakeup_reason;
 
  wakeup_reason = esp_sleep_get_wakeup_cause();
 
  switch(wakeup_reason)
  {
    case ESP_SLEEP_WAKEUP_EXT0 : Serial.println("Wakeup caused by external signal using RTC_IO"); break;
    case ESP_SLEEP_WAKEUP_EXT1 : Serial.println("Wakeup caused by external signal using RTC_CNTL"); break;
    case ESP_SLEEP_WAKEUP_TIMER : Serial.println("Wakeup caused by timer"); break;
    case ESP_SLEEP_WAKEUP_TOUCHPAD : Serial.println("Wakeup caused by touchpad"); break;
    case ESP_SLEEP_WAKEUP_ULP : Serial.println("Wakeup caused by ULP program"); break;
    default : Serial.printf("Wakeup was not caused by deep sleep: %d\n",wakeup_reason); break;
  }
}
 
/*
Method to print the GPIO that triggered the wakeup
*/
void print_GPIO_wake_up(){
  int GPIO_reason = esp_sleep_get_ext1_wakeup_status();
  Serial.print("GPIO that triggered the wake up: GPIO ");
  Serial.println((log(GPIO_reason))/log(2), 0);
}
   
void setup(){
  Serial.begin(115200);
  delay(1000); //Take some time to open up the Serial Monitor
 
  //Increment boot number and print it every reboot
  ++bootCount;
  Serial.println("Boot number: " + String(bootCount));
 
  //Print the wakeup reason for ESP32
  print_wakeup_reason();
 
  //Print the GPIO used to wake up
  print_GPIO_wake_up();
 
  /*
  First we configure the wake up source
  We set our ESP32 to wake up for an external trigger.
  There are two types for ESP32, ext0 and ext1 .
  ext0 uses RTC_IO to wakeup thus requires RTC peripherals
  to be on while ext1 uses RTC Controller so doesnt need
  peripherals to be powered on.
  Note that using internal pullups/pulldowns also requires
  RTC peripherals to be turned on.
  */
  //esp_deep_sleep_enable_ext0_wakeup(GPIO_NUM_15,1); //1 = High, 0 = Low
 
  //If you were to use ext1, you would use it like
  esp_sleep_enable_ext1_wakeup(BUTTON_PIN_BITMASK,ESP_EXT1_WAKEUP_ANY_HIGH);
 
  //Go to sleep now
  Serial.println("Going to sleep now");
  delay(1000);
  esp_deep_sleep_start();
  Serial.println("This will never be printed");
}
 
void loop(){
  //This is not going to be called
}


여기서의 포인트는, 입력을 받는 복수의 GPIO 번호를 더해서 BITMASK 를 구하는 것 입니다.

사용된 GPIO 정보는 2번과 15번 입니다.


GPIO_2 + GPIO_15 > 2^2 + 2^15 = 32772



32772 의 16진수는 8004 입니다.



원본 소스에서 아래처럼 GPIO 의 BITMASK 변경과, 어떤 GPIO 가 눌렀는지의 표시, 그리고 EXT1 을 정의해 줍니다.


...

#define BUTTON_PIN_BITMASK 0x8004 // GPIOs 2 and 15
...

/*
Method to print the GPIO that triggered the wakeup
*/
void print_GPIO_wake_up(){
  int GPIO_reason = esp_sleep_get_ext1_wakeup_status();
  Serial.print("GPIO that triggered the wake up: GPIO ");
  Serial.println((log(GPIO_reason))/log(2), 0);
}
  
...

  //If you were to use ext1, you would use it like
  esp_sleep_enable_ext1_wakeup(BUTTON_PIN_BITMASK,ESP_EXT1_WAKEUP_ANY_HIGH);

...


회로는 다음과 같이 스위치를 연결 했습니다. EXT0 와 다른 것은 복수 (두 개) 의 스위치를 입력받게 하는 것 입니다.



Serial Monitor 의 결과는 다음과 같아요. 어느 GPIO 핀에서 입력 받았는지를 표시해 줍니다.





7. 전류 확인 - Deep sleep


실재로 전류 변화가 있는지 확인해 봤습니다.



음... 그리 많이 차이나지 않군요.

Examples 에서 제공되는 기본 소스는 Wake up 만 확인하는 소스이지, 계산을 시키거나 하는 것이 아니라서 그런 것 같습니다.





FIN


배터리를 가지고 동작하는 장비들은 필수로 가지고 있어야 할 Power mode 들, 특히 Deep sleep 에 대해 알아 봤습니다.

전력 소비가 가장 심한 WiFi/Bluetooth 부분을 어떻게 활용하면서 운용해야 하는지를 많이 고민해야 할 것 같네요.


- WiFi/Bluetooth 연결 정보는 연결 실패 exception 이나 스케줄에 따라 실시

- 가능한 정보는 memory 에 저장하여 꺼내 쓰는 방식으로

- 배터리 방전 threshold 값을 모니터링 하고, 일정 값 이하로 내려가면 지속적인 alert 발생

- WiFi/Bluetooth 에 사용되는 전류량을 컨트롤 하여, 근거리 통신 -> 중거리 -> 장거리 통신으로 연결하게끔 구성

- DTIM (Delivery Traffic Indication Message) beacon mechanism 등을 활용

- 등등...



And

Hardware | ESP32 Cryptographic HW 가속 확인해 보기

|

ESP32 에 관한 글들은 아래 링크들을 참고해 주세요.


* Hardware | EPS32 PWM 기능 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-EPS32-PWM

* Hardware | ESP32 의 internal sensor 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-ESP32-internal-sensors

* Hardware | ESP32 의 Dual core 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-ESP32-Dual-core

* Hardware | ESP32 스펙 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-ESP32-spec-check

* Hardware | ESP32 간단 사용기
    - https://chocoball.tistory.com/entry/Hardware-simple-review-ESP32



1. Cryptographic Hardware Acceleration


한 13여년 전에 웹 서비스 구축 시, HTTPS (SSL) 처리에 CPU 연산을 너무 많이 사용해서 골치가 아팠던 경험이 있습니다.

당시에는 NIC 에 붙어있는 Intel 칩에서 SSL 가속 처리를 못해줘, OS 에서 처리하다 보니 CPU 들이 죽어 나갔죠.


막 HW 가속기 (PCI daughter card 형식) 들이 등장하기도 했습니다만, 어디까지나 실험적인 제품들이었고, OS 와 HW 특성을 많이 타다 보니 PoC 단계에서도 그닥 실효를 거두지 못했었습니다.


암호 연산에 대해서는 요즘 NIC 나 CPU 자체적으로 전용 명령어 set을 가지고 지원하는 시대이다 보니, 예전같은 걱정은 말끔히 사라졌네요.


근래에 출시된 ESP32 에도, 이 암호 연산용 HW 가속 기능이 내장되어 있습니다!

다이어그램 상, SHA / RSA / AES / RNG 등이 있네요.



사양서에도 이 HW Accelerator 에 대한 안내가 되어 있습니다.



Cryptographic hardware acceleration

- AES, SHA-2, RSA, elliptic curve cryptography (ECC), random number generator (RNG)


이번 글은 위의 HW Accelerator 의 몇 가지 기능 중, ESP32 의 hardware AES 에 대해 알아보고자 합니다.




2. AES


미국 정부가 1990년 후반까지 사용하고 있던 DES 암호화 기법이, 약 30대 정도의 PC 를 가지고 뚫리면서, 새로운 암호화 기법을 찾게 됩니다. 공모 결과 AES 가 채택되면서 유명해진 암호화 기법이에요.


AES 는 "Advanced Encryption Standard" 의 약자로 cryptographic symmetric cipher algorithm 을 기반으로 encryption 과 decryption 양쪽에 사용될 수 있는 장점을 가지고 있습니다.

참고로 아래 두 가지의 parameter 를 필요로 합니다.


IV (Initial Vector)

맨 처음 block 을 XOR 처리를 할 때, 덮어 씌우는 data block 이 존재하지 않습니다. 이를 보충해 주기 위한 인위적인 블럭이 IV 입니다.


Encryption Key

암호화 / 복호화에 사용되는 고유의 키 입니다.



너무 자세한 설명에 들어가면, 저의 지식이 바닦 치는 것이 보이기에 여기서 그만 합니다.

인터넷에 관련된 문서 및 동영상들이 어마어마 하니, 자세히 공부해 보고 싶으신 분을 넓은 인터넷의 세계로...




3. Software AES - ESP32


HW 가속을 시험해 보기에 앞서, AES 를 소프트웨어적으루 구현해본 분이 계셔서 따라 해봤습니다.


* AES Encryption/Decryption using Arduino Uno
    - https://www.arduinolab.net/aes-encryptiondecryption-using-arduino-uno/


우선 필요한 것은, Spaniakos 라는 분이 만드신 AES 라이브러리를 설치해 줍니다. 아래 Github 에서 라이브러리를 다운 받습니다.


* AES for microcontrollers (Arduino & Raspberry pi)
    - https://github.com/spaniakos/AES



그리고, Arduino libraries 폴더에 심어 놓으면 됩니다.



기본 준비가 되었으니, ESP32 에서 AES-CBC 방식의 암호화/복호화를 실행 해봅니다.


/*------------------------------------------------------------------------------ 
Program:      aesEncDec 
 
Description:  Basic setup to test AES CBC encryption/decryption using different 
              key lengths.
 
Hardware:     Arduino Uno R3 
 
Software:     Developed using Arduino 1.8.2 IDE
 
Libraries:    
              - AES Encryption Library for Arduino and Raspberry Pi: 
                https://spaniakos.github.io/AES/index.html
 
References: 
              - Advanced Encryption Standard by Example: 
              http://www.adamberent.com/wp-content/uploads/2019/02/AESbyExample.pdf
              - AES Class Reference: https://spaniakos.github.io/AES/classAES.html
 
Date:         July 9, 2017
 
Author:       G. Gainaru, https://www.arduinolab.net
              (based on AES library documentation and examples)
------------------------------------------------------------------------------*/
#include "AES.h"

AES aes ;

unsigned int keyLength [3] = {128, 192, 256}; // key length: 128b, 192b or 256b

byte *key = (unsigned char*)"01234567890123456789012345678901"; // encryption key
byte plain[] = "https://chocoball.tistory.com/entry/Hardware-ESP32-Cryptographic-hardware-acceleration"; // plaintext to encrypt

unsigned long long int myIv = 36753562; // CBC initialization vector; real iv = iv x2 ex: 01234567 = 0123456701234567

void setup () {
	Serial.begin(115200);
}

void loop () {
	for (int i=0; i < 3; i++) {
		Serial.print("- key length [b]: ");
		Serial.println(keyLength [i]);
		aesTest (keyLength[i]);
		delay(2000);
	}
}

void aesTest (int bits) {
	aes.iv_inc();
	
	byte iv [N_BLOCK];
	int plainPaddedLength = sizeof(plain) + (N_BLOCK - ((sizeof(plain)-1) % 16)); // length of padded plaintext [B]
	byte cipher [plainPaddedLength]; // ciphertext (encrypted plaintext)
	byte check [plainPaddedLength]; // decrypted plaintext
	
	aes.set_IV(myIv);
	aes.get_IV(iv);
	
	Serial.print("- encryption time [us]: ");
	unsigned long ms = micros ();
	aes.do_aes_encrypt(plain, sizeof(plain), cipher, key, bits, iv);
	Serial.println(micros() - ms);
	
	aes.set_IV(myIv);
	aes.get_IV(iv);
	
	Serial.print("- decryption time [us]: ");
	ms = micros ();
	aes.do_aes_decrypt(cipher,aes.get_size(),check,key,bits,iv); 
	Serial.println(micros() - ms);
	
	Serial.print("- plain:   ");
	aes.printArray(plain,(bool)true); //print plain with no padding
	
	Serial.print("- cipher:  ");
	aes.printArray(cipher,(bool)false); //print cipher with padding
	
	Serial.print("- check:   ");
	aes.printArray(check,(bool)true); //print decrypted plain with no padding
	
	Serial.print("- iv:      ");
	aes.printArray(iv,16); //print iv
	printf("\n-----------------------------------------------------------------------------------\n");
}


암호화를 걸 평문은, 이 포스트의 URL 을 사용했습니다. :-)



암호화/복호화 잘 됩니다. 속도도 좋네요.




4. Software AES - ATmega328


비교 대상으로 궁금하여, ATmega328 을 탑재한 Arduino nano 로 동일한 계산을 시켜보기로 합니다.

다만, "AES.h" 라이브러리를 include 한다고 제대로 실행되진 않는군요.


	aes.printArray(plain,(bool)true); //print plain with no padding


이유는, ATmega328 의 라이브러리에는 위의 printArray 에서 사용하는 printf_P 함수가 없기 때문입니다. (AES.cpp 에서 정의됨)

ESP32 의 FreeRTOS 에는 C 라이브러리 기본 탑재로 문제 없이 동작하지만, Arduino nano 에서는 동작하지 않습니다.


그리하여, 이를 대신할 function 을 만들어 봤는데, 징그럽게도 동작하지 않더군요.

수많은 삽질을 통해, 배열을 다른 함수의 인자로 전달하려면 배열의 pointer 와 그 배열의 크기를 명시해야 하는 것을 알게 되었습니다.

결국 아래처럼 변경하여 Arduino nano 에서도 동작을 성공 시켰습니다.


...

	showArray(iv, array_size_iv, 1);

...

void showArray (byte *result, int array_length, int hex_conv) {
	for (int i=0; i < array_length; i++) {
		if (hex_conv) {
			Serial.print(result[i], HEX);
		} else {
			Serial.print((char)result[i]);
		}
	}
	Serial.println();
}


최종 소스는 다음과 같습니다.


#include "AES.h"

AES aes ;

unsigned int keyLength [3] = {128, 192, 256}; // key length: 128b, 192b or 256b

byte *key = (unsigned char*)"01234567890123456789012345678901"; // encryption key
byte plain[] = "https://chocoball.tistory.com/entry/Hardware-ESP32-Cryptographic-hardware-acceleration"; // plaintext to encrypt

unsigned long long int myIv = 36753562; // CBC initialization vector; real iv = iv x2 ex: 01234567 = 0123456701234567

void setup () {
	Serial.begin(115200);
}

void loop () {
	for (int i=0; i < 3; i++) {
		Serial.print("- key length [b]: ");
		Serial.println(keyLength [i]);
		aesTest (keyLength[i]);
		delay(2000);
	}
}

void aesTest (int bits) {
	aes.iv_inc();
	
	byte iv [N_BLOCK];
	int plainPaddedLength = sizeof(plain) + (N_BLOCK - ((sizeof(plain)-1) % 16)); // length of padded plaintext [B]
	byte cipher [plainPaddedLength]; // ciphertext (encrypted plaintext)
	byte check [plainPaddedLength]; // decrypted plaintext
	
	aes.set_IV(myIv);
	aes.get_IV(iv);
	
	Serial.print("- encryption time [us]: ");
	unsigned long ms = micros ();
	aes.do_aes_encrypt(plain, sizeof(plain), cipher, key, bits, iv);
	Serial.println(micros() - ms);
	
	aes.set_IV(myIv);
	aes.get_IV(iv);
	
	Serial.print("- decryption time [us]: ");
	ms = micros ();
	aes.do_aes_decrypt(cipher,aes.get_size(),check,key,bits,iv);
	Serial.println(micros() - ms);
	
	Serial.print("- plain:   ");
	//aes.printArray(plain,(bool)true); //print plain with no padding
	int array_size_p = sizeof(plain);
	showArray(plain, array_size_p, 0);
	
	Serial.print("- cipher:  ");
	//aes.printArray(cipher,(bool)false); //print cipher with padding
	int array_size_ci = sizeof(cipher);
	showArray(cipher, array_size_ci, 0);
	
	Serial.print("- check:   ");
	//aes.printArray(check,(bool)true); //print decrypted plain with no padding
	int array_size_ch = sizeof(check);
	showArray(check, array_size_ch, 0);
	
	Serial.print("- iv:      ");
	//aes.printArray(iv,16); //print iv
	int array_size_iv = sizeof(iv);
	showArray(iv, array_size_iv, 1);
	Serial.println("-----------------------------------------------------------------------------------");
}

void showArray (byte *result, int array_length, int hex_conv) {
	for (int i=0; i < array_length; i++) {
		if (hex_conv) {
			Serial.print(result[i], HEX);
		} else {
			Serial.print((char)result[i]);
		}
	}
	Serial.println();
}


아래는 Arduino nano 에서 실행시킨 결과 입니다.

ESP32 에서 Software 로 돌린 AES 결과와 비교시, 걸린 시간 빼곤 완벽히 동일합니다.



ESP32 vs. ATmega328 의 CPU 차에 의한 software AES 계산은 encryption = 27 배, decryption = 20 배 정도 차이 났습니다.


----------------------------------------------
| bits | ESP32 | ATmega328 | diff. (multiply)|
|--------------------------------------------|
| 128  |  159  |   4396    |       27.6      |
|      |  267  |   5388    |       20.1      |
|--------------------------------------------|
| 192  |  189  |   5156    |       27.2      | 
|      |  321  |   6392    |       19.9      |
|--------------------------------------------|
| 256  |  220  |   5964    |       27.1      |
|      |  376  |   7432    |       19.7      |
----------------------------------------------


ESP32 를 찬양하라!





5. Hardware AES - library


마지막으로 ESP32 의 HW AES 를 걸어볼 차례 입니다.

HW accelerator 의 Native library 는 아래 글에서 설명이 잘 되어 있습니다.


* AES-CBC encryption or decryption operation
    - https://tls.mbed.org/api/aes_8h.html#a321834eafbf0dacb36dac343bfd6b35d


요는 mbedtls 함수를 이용하면, HW accelerator 를 사용할 수 있게 되는군요. 키 포인트는 "mbedtls_aes_crypt_cbc" 함수가 되겠습니다.

int mbedtls_aes_crypt_cbc ( mbedtls_aes_context *	ctx,
							int						mode,
							size_t					length,
							unsigned char			iv[16],
							const unsigned char *	input,
							unsigned char *			output
)


각 변수들의 정의 입니다.


---------------------------------------------------------------------------------------------------
| Parameters | Meaning                                                                            |
---------------------------------------------------------------------------------------------------
|    ctx     | The AES context to use for encryption or decryption.                               |
|            | It must be initialized and bound to a key.                                         |
---------------------------------------------------------------------------------------------------
|    mode    | The AES operation: MBEDTLS_AES_ENCRYPT or MBEDTLS_AES_DECRYPT.                     |
---------------------------------------------------------------------------------------------------
|   length   | The length of the input data in Bytes.                                             |
|            | This must be a multiple of the block size (16 Bytes).                              |
---------------------------------------------------------------------------------------------------
|    iv      | Initialization vector (updated after use).                                         |
|            | It must be a readable and writeable buffer of 16 Bytes.                            |
---------------------------------------------------------------------------------------------------
|   input    | The buffer holding the input data. It must be readable and of size length Bytes.   |
---------------------------------------------------------------------------------------------------
|   output   | The buffer holding the output data. It must be writeable and of size length Bytes. |
---------------------------------------------------------------------------------------------------


아래는 실재 구현에 도움이 될 만한 사이트들 입니다. 예제들이 설명되어 있어요.


* ESP32 Arduino: Encryption using AES-128 in ECB mode
    - https://techtutorialsx.com/2018/04/18/esp32-arduino-encryption-using-aes-128-in-ecb-mode/

* ESP32 Arduino Tutorial: Encryption AES128 in ECB mode
    - https://everythingesp.com/esp32-arduino-tutorial-encryption-aes128-in-ecb-mode/

* How to encrypt data with AES-CBC mode
    - https://tls.mbed.org/kb/how-to/encrypt-with-aes-cbc

재미 있는 것은, "mbedtls/aes.h" 의 library 도 동작하지만,

#include "mbedtls/aes.h"


"hwcrypto/aes.h" 라이브러리도 동일한 parameter 와 동작을 보여줍니다. 함수명에 mbedtls 가 붙느냐, esp가 붙느냐의 차이 뿐.


#include "hwcrypto/aes.h"


위의 두 가지 library 는 따로 설치하지 않아도 되는걸 보면, native library 이면서 서로가 copy 버전이 아닐까 하네요.




6. Hardware AES - 확인


위의 Software AES 를 Hardware AES 용으로 변환하면 되겠지만, 아직 지식이 짧은 관계로 아래 소스를 가지고 확인해 봤습니다.

* Example of using hardware AES 256 Crypto in CBC mode on the ESP32 using ESP-IDF
* cnlohr/esp32_aes_example.c

    - https://gist.github.com/cnlohr/96128ef4126bcc878b1b5a7586c624ef

#include "string.h"
#include "stdio.h"
#include "hwcrypto/aes.h"

/*
For Encryption time: 1802.40us (9.09 MB/s) at 16kB blocks.
*/

static inline int32_t _getCycleCount(void) {
	int32_t ccount;
	asm volatile("rsr %0,ccount":"=a" (ccount));
	return ccount;
}

char plaintext[16384];
char encrypted[16384];

void encodetest() {
	uint8_t key[32];
	uint8_t iv[16];
	
	//If you have cryptographically random data in the start of your payload, you do not need
	//an IV. If you start a plaintext payload, you will need an IV.
	memset( iv, 0, sizeof( iv ) );
	
	//Right now, I am using a key of all zeroes. This should change. You should fill the key
	//out with actual data.
	memset( key, 0, sizeof( key ) );
	
	memset( plaintext, 0, sizeof( plaintext ) );
	strcpy( plaintext, "https://chocoball.tistory.com/entry/Hardware-ESP32-Cryptographic-hardware-acceleration" );
	
	//Just FYI - you must be encrypting/decrypting data that is in BLOCKSIZE chunks!!!
	
	esp_aes_context ctx;
	esp_aes_init( &ctx );
	esp_aes_setkey( &ctx, key, 256 );
	int32_t start = _getCycleCount();
	esp_aes_crypt_cbc( &ctx, ESP_AES_ENCRYPT, sizeof(plaintext), iv, (uint8_t*)plaintext, (uint8_t*)encrypted );
	int32_t end = _getCycleCount();
	
	float enctime = (end-start)/240.0;
	Serial.printf( "Encryption time: %.2fus (%f MB/s)\n", enctime, (sizeof(plaintext)*1.0)/enctime );
	//See encrypted payload, and wipe out plaintext.
	
	memset( plaintext, 0, sizeof( plaintext ) );
	
	int i;
	for( i = 0; i < 128; i++ ) {
		Serial.printf( "%02x[%c]%c", encrypted[i], (encrypted[i]>31)?encrypted[i]:' ', ((i&0xf)!=0xf)?' ':'\n' );
	}
	Serial.printf( "\n" );
	
	//Must reset IV.
	//XXX TODO: Research further: I found out if you don't reset the IV, the first block will fail
	//but subsequent blocks will pass. Is there some strange cryptoalgebra going on that permits this?
	Serial.printf( "IV: %02x %02x\n", iv[0], iv[1] );
	memset( iv, 0, sizeof( iv ) );
	
	//Use the ESP32 to decrypt the CBC block.
	Serial.print("- decryption time [us]: ");
	unsigned long ms = micros ();
	esp_aes_crypt_cbc( &ctx, ESP_AES_DECRYPT, sizeof(encrypted), iv, (uint8_t*)encrypted, (uint8_t*)plaintext );
	Serial.println(micros() - ms);
	
	//Verify output
	for( i = 0; i < 128; i++ ) {
		Serial.printf( "%02x[%c]%c", plaintext[i], (plaintext[i]>31)?plaintext[i]:' ', ((i&0xf)!=0xf)?' ':'\n' );
	}
	Serial.printf( "\n" );
	
	esp_aes_free( &ctx );
}

void setup() {
	// put your setup code here, to run once:
	Serial.begin(115200);
	encodetest();
}

void loop() {
	// put your main code here, to run repeatedly:
}


결과는 다음과 같습니다.

위의 Software AES 와 비슷하게 결과를 내도록 소스를 만들면 확연히 비교할 수 있겠으나, 공부를 더 해야 함.


다만, 최종적인 처리 속도는 결코 아래 결과에서 변하지 않는다는 것을 여러 삽질을 통해 발견했으니 이걸로 만족.



Hardware AES 를 서포트하는 전용 명령어 set 이 최적화가 되지 않아, 이런 결과가 나온 것인지 모르겠네요.

지금으로써는 전용 accelerator 를 사용하지 않고, Software AES 를 구현하는 것이 더 속도적인 이득이 있는 듯 보입니다.


단, 여러가지 일을 동시에 처리해야 할 경우, 암호화/복호화 처리 부분만 따로 분리하여 HW accelerator 를 이용한다면, CPU 부하를 분산시켜 효율적인 활용은 가능할 것 같네요.




FIN


혹시, 위의 Hardware AES 결과가 잘못된 방법으로 검증된 것이라면 댓글로 알려주세요.


esp32_technical_reference_manual_en.pdf



Clock 사이클을 바탕으로 이론적인 계산을 해보면 68ns 레벨이라고, 아래 블로그에서 봤는데, 실측과는 많이 다르군요.


* Pwn the ESP32 crypto-core
    - https://limitedresults.com/2019/08/pwn-the-esp32-crypto-core/


Doing simple math, the HW AES-128 encryption process is 68.75ns (@160MHz).


그렇다고 합니다.


And

Hardware | EPS32 PWM 기능 확인해 보기

|

ESP32 에 관한 포스트는 아래를 참고해 주세요.


* Hardware | ESP32 의 internal sensor 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-ESP32-internal-sensors

* Hardware | ESP32 의 Dual core 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-ESP32-Dual-core

* Hardware | ESP32 스펙 확인해 보기
    - https://chocoball.tistory.com/entry/Hardware-ESP32-spec-check

* Hardware | ESP32 간단 사용기
    - https://chocoball.tistory.com/entry/Hardware-simple-review-ESP32




1. PWM


ESP32 에는 PWM (Pulse Width Modulation) 기능이 들어가 있습니다.

LED 의 dimming (밝기) 조절이나, LCD panel 의 색조절 등에 사용되는 기법입니다.


일전에 8x8 LED matrix 를 다양한 색을 표현하기 위해, PWM 을 구현해 주는 전용 보드를 사용해서 확인해 본 적이 있습니다.


* Hardware | 8x8 LED matrix 와 Colorduino 이용해 보기
    - https://chocoball.tistory.com/entry/Hardware-8x8-LED-matrix-Colorduino


이반적인 Arduino 에는 이 기능이 기본 내장이 아닌지라, PWM 을 구현하려면 대응 보드를 사용해야 하는 번거로움이 존재합니다.

그치만, ESP32 는 기본 내장이에요!



PWM 을 통한 활용은 LED 뿐 만 아니라, step motor 난 piezo speaker 등에서도 활용할 수 있습니다.



기본 동작은 높은 주파수를 통해, on/off 를 해주는 시간 (duty) 를 변경하면서 조절하는 방법입니다.

당연히 duty 가 길면 길수록 밝기가 세다거나, 지속적인 동작을 보여주는 원리 입니다.

LED, Step motor, 그리고 Piezo 스피커를 작동시키는 동작원리와 완벽히 같습니다.




2. 코딩


지금까지 몇 번 봐왔던 원리인지라, 바로 코딩에 들어가 봅니다. 참조한 사이트는 아래 입니다.


* ESP32 PWM Example
    - https://circuits4you.com/2018/12/31/esp32-pwm-example/


PWM 을 구현하기 위한 명령어는 라이브러리에 준비되어 있으니, 그냥 사용해 줍니다.


* ledcSetup(PWM_Channel_Number, Frequency, resolution)

- Pass three arguments as an input to this function, channel number, frequency and the resolution of PWM channel at inside the setup function only.


* ledcAttachPin(GPIO_PIN , CHANNEL)

- Two arguments. One is the GPIO pin on which we want to get the OUTPUT of signal and second argument is the channel which we produce the signal.


* ledcWrite(CHANNEL, DUTY_CYCLE)

- ledcWrite function is used to generate the signal with a duty cycle value.


ledcSetupledcAttachPin 은 setup() 에서, 실제 구동은 loop() 에서 ledcWrite 를 사용합니다. digitalWrite 와 비슷하죠.

최종적으로 ESP32 보드에 실장되어 있는 LED 를 가지고 PWM 을 확인한 코드가 아래 입니다.


// Generates PWM on Internal LED Pin GPIO 2 of ESP32
#define LED 2 //On Board LED

int brightness = 0; // how bright the LED is
int fadeAmount = 5; // how many points to fade the LED by

// setting PWM properties
const int freq = 5000;
const int ledChannel = 0;
const int resolution = 10; // Resolution 8, 10, 12, 15

void setup() {
	Serial.begin(115200);
	pinMode(LED, OUTPUT);
	
	// configure LED PWM functionalitites
	ledcSetup(ledChannel, freq, resolution);
	
	// attach the channel to the GPIO2 to be controlled
	ledcAttachPin(LED, ledChannel);
}

void loop() {
	// PWM Value varries from 0 to 1023
	Serial.println("10 % PWM");
	ledcWrite(ledChannel, 102);
	delay(2000);
	
	Serial.println("20 % PWM");
	ledcWrite(ledChannel,205);
	delay(2000);
	
	Serial.println("40 % PWM");
	ledcWrite(ledChannel,410);
	delay(2000);
	
	Serial.println("70 % PWM");
	ledcWrite(ledChannel,714);
	delay(2000);
	
	Serial.println("100 % PWM");
	ledcWrite(ledChannel,1024);
	delay(2000);
	
	// Continuous Fading
	Serial.println("Fadding Started");
	while(1) {
		// set the brightness of pin 2:
		ledcWrite(ledChannel, brightness);
		
		// change the brightness for next time through the loop:
		brightness = brightness + fadeAmount;
		
		// reverse the direction of the fading at the ends of the fade:
		if (brightness <= 0 || brightness >= 1023) {
			fadeAmount = -fadeAmount;
		}
		
		// wait for 30 milliseconds to see the dimming effect
		delay(10);
	}
}




3. LED_BUILTIN


위의 코드를 실행하면 Serial Monitor 에서는 다음과 같이 표시됩니다.


소스에서도 알 수 있듯이, 10% > 20% > 40% > 70% > 100% 으로 LED 를 키고, 그 다음부터는 5/1024 씩 증감하면서 dimming 을 표현해 줍니다.

실제 동작 동영상은 다음과 같습니다.




4. 오실로스코프 확인


여기서 끝내면 심심하니, 실제 파형을 확인해 보려 합니다. 참고한 사이트는 다음과 같습니다.


* ESP32 PWM with Arduino IDE (Analog Output)
    - https://randomnerdtutorials.com/esp32-pwm-arduino-ide/


소스 코드는 다음과 같습니다.


// the number of the LED pin
const int ledPin = 16;  // 16 corresponds to GPIO16
const int ledPin2 = 17; // 17 corresponds to GPIO17
const int ledPin3 = 5;  // 5 corresponds to GPIO5

// setting PWM properties
const int freq = 5000;
const int ledChannel = 0;
const int resolution = 8;
 
void setup() {
	// configure LED PWM functionalitites
	ledcSetup(ledChannel, freq, resolution);
	
	// attach the channel to the GPIO to be controlled
	ledcAttachPin(ledPin, ledChannel);
	ledcAttachPin(ledPin2, ledChannel);
	ledcAttachPin(ledPin3, ledChannel);
}

void loop() {
	// increase the LED brightness
	for(int dutyCycle = 0; dutyCycle <= 255; dutyCycle++) {
		// changing the LED brightness with PWM
		ledcWrite(ledChannel, dutyCycle);
		delay(15);
	}
	
	// decrease the LED brightness
	for(int dutyCycle = 255; dutyCycle >= 0; dutyCycle--) {
		// changing the LED brightness with PWM
		ledcWrite(ledChannel, dutyCycle);
		delay(15);
	}
}


3개의 LED 에 PWM 을 거는 소스 입니다.

2개 pin 에는 실제로 LED 를 연결해서 dimming 을 확인하고, 나머지 하나의 pin 에는 오실로스코프를 연결하여 파형을 확인해 봅니다.



이론과 실험이 만나는 동영상 입니다.



당연히 이렇게 될 것이라 알지만, 너무 이쁘게 그래프가 나와서 조금 놀랬습니다. Frequency 와 Duty 값이 정확하게 측정되는 군요.

ESP32 의 PWM 기능은 완벽하군요.




5. Piezo 연결


원리는 같으나, 눈으로 보면 다르게 느껴지는 Piezo 스피커도 확인해 보았습니다. 아래 링크를 참조하였습니다.


* ESP32 Arduino: Controlling a buzzer with PWM
    - https://techtutorialsx.com/2017/07/01/esp32-arduino-controlling-a-buzzer-with-pwm/


PWM 동작하는 GPIO 하나 잡아서 연결하면 됩니다.



저는 piezo 를 D4 = GPIO4 에 연결했습니다.


int freq = 2000;
int channel = 0;
int resolution = 8;
  
void setup() {
	Serial.begin(115200);
	ledcSetup(channel, freq, resolution);
	ledcAttachPin(4, channel);
}
  
void loop() {
	ledcWriteTone(channel, 2000);
	for (int dutyCycle = 0; dutyCycle <= 255; dutyCycle = dutyCycle + 10) {
		Serial.println(dutyCycle);
		ledcWrite(channel, dutyCycle);
		delay(1000);
	}
	
	ledcWrite(channel, 125);
	for (int freq = 255; freq < 10000; freq = freq + 250){
		Serial.println(freq);
		ledcWriteTone(channel, freq);
		delay(1000);
	}
}


처음에는 2000Hz 에서 duty 사이클을 10씩 증가하는 소리이고,

그 다음은 duty 를 125로 고정한 다음, 주파수만 바꿔가면서 소리를 내는 소스 입니다.





FIN


지금까지 ESP32 의 내부 기능들을 확인해 봤습니다.

확인하지 않고 남아있는 기능들이 Deep Sleep 과 Hardware Acceleration (Cryptographic) 정도가 남았네요.


And
prev | 1 | next